mirror of
https://github.com/crazy-max/diun.git
synced 2025-01-12 11:38:11 +00:00
436 lines
11 KiB
Go
436 lines
11 KiB
Go
// MIT License
|
|
|
|
// Copyright (c) 2018 Andy Pan
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
package ants
|
|
|
|
import (
|
|
"context"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
syncx "github.com/panjf2000/ants/v2/internal/sync"
|
|
)
|
|
|
|
type poolCommon struct {
|
|
// capacity of the pool, a negative value means that the capacity of pool is limitless, an infinite pool is used to
|
|
// avoid potential issue of endless blocking caused by nested usage of a pool: submitting a task to pool
|
|
// which submits a new task to the same pool.
|
|
capacity int32
|
|
|
|
// running is the number of the currently running goroutines.
|
|
running int32
|
|
|
|
// lock for protecting the worker queue.
|
|
lock sync.Locker
|
|
|
|
// workers is a slice that store the available workers.
|
|
workers workerQueue
|
|
|
|
// state is used to notice the pool to closed itself.
|
|
state int32
|
|
|
|
// cond for waiting to get an idle worker.
|
|
cond *sync.Cond
|
|
|
|
// done is used to indicate that all workers are done.
|
|
allDone chan struct{}
|
|
// once is used to make sure the pool is closed just once.
|
|
once *sync.Once
|
|
|
|
// workerCache speeds up the obtainment of a usable worker in function:retrieveWorker.
|
|
workerCache sync.Pool
|
|
|
|
// waiting is the number of goroutines already been blocked on pool.Submit(), protected by pool.lock
|
|
waiting int32
|
|
|
|
purgeDone int32
|
|
purgeCtx context.Context
|
|
stopPurge context.CancelFunc
|
|
|
|
ticktockDone int32
|
|
ticktockCtx context.Context
|
|
stopTicktock context.CancelFunc
|
|
|
|
now atomic.Value
|
|
|
|
options *Options
|
|
}
|
|
|
|
// Pool accepts the tasks and process them concurrently,
|
|
// it limits the total of goroutines to a given number by recycling goroutines.
|
|
type Pool struct {
|
|
poolCommon
|
|
}
|
|
|
|
// purgeStaleWorkers clears stale workers periodically, it runs in an individual goroutine, as a scavenger.
|
|
func (p *Pool) purgeStaleWorkers() {
|
|
ticker := time.NewTicker(p.options.ExpiryDuration)
|
|
|
|
defer func() {
|
|
ticker.Stop()
|
|
atomic.StoreInt32(&p.purgeDone, 1)
|
|
}()
|
|
|
|
purgeCtx := p.purgeCtx // copy to the local variable to avoid race from Reboot()
|
|
for {
|
|
select {
|
|
case <-purgeCtx.Done():
|
|
return
|
|
case <-ticker.C:
|
|
}
|
|
|
|
if p.IsClosed() {
|
|
break
|
|
}
|
|
|
|
var isDormant bool
|
|
p.lock.Lock()
|
|
staleWorkers := p.workers.refresh(p.options.ExpiryDuration)
|
|
n := p.Running()
|
|
isDormant = n == 0 || n == len(staleWorkers)
|
|
p.lock.Unlock()
|
|
|
|
// Notify obsolete workers to stop.
|
|
// This notification must be outside the p.lock, since w.task
|
|
// may be blocking and may consume a lot of time if many workers
|
|
// are located on non-local CPUs.
|
|
for i := range staleWorkers {
|
|
staleWorkers[i].finish()
|
|
staleWorkers[i] = nil
|
|
}
|
|
|
|
// There might be a situation where all workers have been cleaned up (no worker is running),
|
|
// while some invokers still are stuck in p.cond.Wait(), then we need to awake those invokers.
|
|
if isDormant && p.Waiting() > 0 {
|
|
p.cond.Broadcast()
|
|
}
|
|
}
|
|
}
|
|
|
|
// ticktock is a goroutine that updates the current time in the pool regularly.
|
|
func (p *Pool) ticktock() {
|
|
ticker := time.NewTicker(nowTimeUpdateInterval)
|
|
defer func() {
|
|
ticker.Stop()
|
|
atomic.StoreInt32(&p.ticktockDone, 1)
|
|
}()
|
|
|
|
ticktockCtx := p.ticktockCtx // copy to the local variable to avoid race from Reboot()
|
|
for {
|
|
select {
|
|
case <-ticktockCtx.Done():
|
|
return
|
|
case <-ticker.C:
|
|
}
|
|
|
|
if p.IsClosed() {
|
|
break
|
|
}
|
|
|
|
p.now.Store(time.Now())
|
|
}
|
|
}
|
|
|
|
func (p *Pool) goPurge() {
|
|
if p.options.DisablePurge {
|
|
return
|
|
}
|
|
|
|
// Start a goroutine to clean up expired workers periodically.
|
|
p.purgeCtx, p.stopPurge = context.WithCancel(context.Background())
|
|
go p.purgeStaleWorkers()
|
|
}
|
|
|
|
func (p *Pool) goTicktock() {
|
|
p.now.Store(time.Now())
|
|
p.ticktockCtx, p.stopTicktock = context.WithCancel(context.Background())
|
|
go p.ticktock()
|
|
}
|
|
|
|
func (p *Pool) nowTime() time.Time {
|
|
return p.now.Load().(time.Time)
|
|
}
|
|
|
|
// NewPool instantiates a Pool with customized options.
|
|
func NewPool(size int, options ...Option) (*Pool, error) {
|
|
if size <= 0 {
|
|
size = -1
|
|
}
|
|
|
|
opts := loadOptions(options...)
|
|
|
|
if !opts.DisablePurge {
|
|
if expiry := opts.ExpiryDuration; expiry < 0 {
|
|
return nil, ErrInvalidPoolExpiry
|
|
} else if expiry == 0 {
|
|
opts.ExpiryDuration = DefaultCleanIntervalTime
|
|
}
|
|
}
|
|
|
|
if opts.Logger == nil {
|
|
opts.Logger = defaultLogger
|
|
}
|
|
|
|
p := &Pool{poolCommon: poolCommon{
|
|
capacity: int32(size),
|
|
allDone: make(chan struct{}),
|
|
lock: syncx.NewSpinLock(),
|
|
once: &sync.Once{},
|
|
options: opts,
|
|
}}
|
|
p.workerCache.New = func() interface{} {
|
|
return &goWorker{
|
|
pool: p,
|
|
task: make(chan func(), workerChanCap),
|
|
}
|
|
}
|
|
if p.options.PreAlloc {
|
|
if size == -1 {
|
|
return nil, ErrInvalidPreAllocSize
|
|
}
|
|
p.workers = newWorkerQueue(queueTypeLoopQueue, size)
|
|
} else {
|
|
p.workers = newWorkerQueue(queueTypeStack, 0)
|
|
}
|
|
|
|
p.cond = sync.NewCond(p.lock)
|
|
|
|
p.goPurge()
|
|
p.goTicktock()
|
|
|
|
return p, nil
|
|
}
|
|
|
|
// Submit submits a task to this pool.
|
|
//
|
|
// Note that you are allowed to call Pool.Submit() from the current Pool.Submit(),
|
|
// but what calls for special attention is that you will get blocked with the last
|
|
// Pool.Submit() call once the current Pool runs out of its capacity, and to avoid this,
|
|
// you should instantiate a Pool with ants.WithNonblocking(true).
|
|
func (p *Pool) Submit(task func()) error {
|
|
if p.IsClosed() {
|
|
return ErrPoolClosed
|
|
}
|
|
|
|
w, err := p.retrieveWorker()
|
|
if w != nil {
|
|
w.inputFunc(task)
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Running returns the number of workers currently running.
|
|
func (p *Pool) Running() int {
|
|
return int(atomic.LoadInt32(&p.running))
|
|
}
|
|
|
|
// Free returns the number of available workers, -1 indicates this pool is unlimited.
|
|
func (p *Pool) Free() int {
|
|
c := p.Cap()
|
|
if c < 0 {
|
|
return -1
|
|
}
|
|
return c - p.Running()
|
|
}
|
|
|
|
// Waiting returns the number of tasks waiting to be executed.
|
|
func (p *Pool) Waiting() int {
|
|
return int(atomic.LoadInt32(&p.waiting))
|
|
}
|
|
|
|
// Cap returns the capacity of this pool.
|
|
func (p *Pool) Cap() int {
|
|
return int(atomic.LoadInt32(&p.capacity))
|
|
}
|
|
|
|
// Tune changes the capacity of this pool, note that it is noneffective to the infinite or pre-allocation pool.
|
|
func (p *Pool) Tune(size int) {
|
|
capacity := p.Cap()
|
|
if capacity == -1 || size <= 0 || size == capacity || p.options.PreAlloc {
|
|
return
|
|
}
|
|
atomic.StoreInt32(&p.capacity, int32(size))
|
|
if size > capacity {
|
|
if size-capacity == 1 {
|
|
p.cond.Signal()
|
|
return
|
|
}
|
|
p.cond.Broadcast()
|
|
}
|
|
}
|
|
|
|
// IsClosed indicates whether the pool is closed.
|
|
func (p *Pool) IsClosed() bool {
|
|
return atomic.LoadInt32(&p.state) == CLOSED
|
|
}
|
|
|
|
// Release closes this pool and releases the worker queue.
|
|
func (p *Pool) Release() {
|
|
if !atomic.CompareAndSwapInt32(&p.state, OPENED, CLOSED) {
|
|
return
|
|
}
|
|
|
|
if p.stopPurge != nil {
|
|
p.stopPurge()
|
|
p.stopPurge = nil
|
|
}
|
|
if p.stopTicktock != nil {
|
|
p.stopTicktock()
|
|
p.stopTicktock = nil
|
|
}
|
|
|
|
p.lock.Lock()
|
|
p.workers.reset()
|
|
p.lock.Unlock()
|
|
// There might be some callers waiting in retrieveWorker(), so we need to wake them up to prevent
|
|
// those callers blocking infinitely.
|
|
p.cond.Broadcast()
|
|
}
|
|
|
|
// ReleaseTimeout is like Release but with a timeout, it waits all workers to exit before timing out.
|
|
func (p *Pool) ReleaseTimeout(timeout time.Duration) error {
|
|
if p.IsClosed() || (!p.options.DisablePurge && p.stopPurge == nil) || p.stopTicktock == nil {
|
|
return ErrPoolClosed
|
|
}
|
|
|
|
p.Release()
|
|
|
|
var purgeCh <-chan struct{}
|
|
if !p.options.DisablePurge {
|
|
purgeCh = p.purgeCtx.Done()
|
|
} else {
|
|
purgeCh = p.allDone
|
|
}
|
|
|
|
if p.Running() == 0 {
|
|
p.once.Do(func() {
|
|
close(p.allDone)
|
|
})
|
|
}
|
|
|
|
timer := time.NewTimer(timeout)
|
|
defer timer.Stop()
|
|
for {
|
|
select {
|
|
case <-timer.C:
|
|
return ErrTimeout
|
|
case <-p.allDone:
|
|
<-purgeCh
|
|
<-p.ticktockCtx.Done()
|
|
if p.Running() == 0 &&
|
|
(p.options.DisablePurge || atomic.LoadInt32(&p.purgeDone) == 1) &&
|
|
atomic.LoadInt32(&p.ticktockDone) == 1 {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reboot reboots a closed pool, it does nothing if the pool is not closed.
|
|
// If you intend to reboot a closed pool, use ReleaseTimeout() instead of
|
|
// Release() to ensure that all workers are stopped and resource are released
|
|
// before rebooting, otherwise you may run into data race.
|
|
func (p *Pool) Reboot() {
|
|
if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) {
|
|
atomic.StoreInt32(&p.purgeDone, 0)
|
|
p.goPurge()
|
|
atomic.StoreInt32(&p.ticktockDone, 0)
|
|
p.goTicktock()
|
|
p.allDone = make(chan struct{})
|
|
p.once = &sync.Once{}
|
|
}
|
|
}
|
|
|
|
func (p *Pool) addRunning(delta int) int {
|
|
return int(atomic.AddInt32(&p.running, int32(delta)))
|
|
}
|
|
|
|
func (p *Pool) addWaiting(delta int) {
|
|
atomic.AddInt32(&p.waiting, int32(delta))
|
|
}
|
|
|
|
// retrieveWorker returns an available worker to run the tasks.
|
|
func (p *Pool) retrieveWorker() (w worker, err error) {
|
|
p.lock.Lock()
|
|
|
|
retry:
|
|
// First try to fetch the worker from the queue.
|
|
if w = p.workers.detach(); w != nil {
|
|
p.lock.Unlock()
|
|
return
|
|
}
|
|
|
|
// If the worker queue is empty, and we don't run out of the pool capacity,
|
|
// then just spawn a new worker goroutine.
|
|
if capacity := p.Cap(); capacity == -1 || capacity > p.Running() {
|
|
p.lock.Unlock()
|
|
w = p.workerCache.Get().(*goWorker)
|
|
w.run()
|
|
return
|
|
}
|
|
|
|
// Bail out early if it's in nonblocking mode or the number of pending callers reaches the maximum limit value.
|
|
if p.options.Nonblocking || (p.options.MaxBlockingTasks != 0 && p.Waiting() >= p.options.MaxBlockingTasks) {
|
|
p.lock.Unlock()
|
|
return nil, ErrPoolOverload
|
|
}
|
|
|
|
// Otherwise, we'll have to keep them blocked and wait for at least one worker to be put back into pool.
|
|
p.addWaiting(1)
|
|
p.cond.Wait() // block and wait for an available worker
|
|
p.addWaiting(-1)
|
|
|
|
if p.IsClosed() {
|
|
p.lock.Unlock()
|
|
return nil, ErrPoolClosed
|
|
}
|
|
|
|
goto retry
|
|
}
|
|
|
|
// revertWorker puts a worker back into free pool, recycling the goroutines.
|
|
func (p *Pool) revertWorker(worker *goWorker) bool {
|
|
if capacity := p.Cap(); (capacity > 0 && p.Running() > capacity) || p.IsClosed() {
|
|
p.cond.Broadcast()
|
|
return false
|
|
}
|
|
|
|
worker.lastUsed = p.nowTime()
|
|
|
|
p.lock.Lock()
|
|
// To avoid memory leaks, add a double check in the lock scope.
|
|
// Issue: https://github.com/panjf2000/ants/issues/113
|
|
if p.IsClosed() {
|
|
p.lock.Unlock()
|
|
return false
|
|
}
|
|
if err := p.workers.insert(worker); err != nil {
|
|
p.lock.Unlock()
|
|
return false
|
|
}
|
|
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
|
|
p.cond.Signal()
|
|
p.lock.Unlock()
|
|
|
|
return true
|
|
}
|