0
0
Fork 0
mirror of https://github.com/crazy-max/diun.git synced 2025-01-26 08:48:50 +00:00
crazy-max_diun/vendor/go.etcd.io/bbolt/tx_check.go
2024-12-14 22:30:21 +01:00

226 lines
7.6 KiB
Go

package bbolt
import (
"encoding/hex"
"fmt"
)
// Check performs several consistency checks on the database for this transaction.
// An error is returned if any inconsistency is found.
//
// It can be safely run concurrently on a writable transaction. However, this
// incurs a high cost for large databases and databases with a lot of subbuckets
// because of caching. This overhead can be removed if running on a read-only
// transaction, however, it is not safe to execute other writer transactions at
// the same time.
func (tx *Tx) Check() <-chan error {
return tx.CheckWithOptions()
}
// CheckWithOptions allows users to provide a customized `KVStringer` implementation,
// so that bolt can generate human-readable diagnostic messages.
func (tx *Tx) CheckWithOptions(options ...CheckOption) <-chan error {
chkConfig := checkConfig{
kvStringer: HexKVStringer(),
}
for _, op := range options {
op(&chkConfig)
}
ch := make(chan error)
go tx.check(chkConfig.kvStringer, ch)
return ch
}
func (tx *Tx) check(kvStringer KVStringer, ch chan error) {
// Force loading free list if opened in ReadOnly mode.
tx.db.loadFreelist()
// Check if any pages are double freed.
freed := make(map[pgid]bool)
all := make([]pgid, tx.db.freelist.count())
tx.db.freelist.copyall(all)
for _, id := range all {
if freed[id] {
ch <- fmt.Errorf("page %d: already freed", id)
}
freed[id] = true
}
// Track every reachable page.
reachable := make(map[pgid]*page)
reachable[0] = tx.page(0) // meta0
reachable[1] = tx.page(1) // meta1
if tx.meta.freelist != pgidNoFreelist {
for i := uint32(0); i <= tx.page(tx.meta.freelist).overflow; i++ {
reachable[tx.meta.freelist+pgid(i)] = tx.page(tx.meta.freelist)
}
}
// Recursively check buckets.
tx.checkBucket(&tx.root, reachable, freed, kvStringer, ch)
// Ensure all pages below high water mark are either reachable or freed.
for i := pgid(0); i < tx.meta.pgid; i++ {
_, isReachable := reachable[i]
if !isReachable && !freed[i] {
ch <- fmt.Errorf("page %d: unreachable unfreed", int(i))
}
}
// Close the channel to signal completion.
close(ch)
}
func (tx *Tx) checkBucket(b *Bucket, reachable map[pgid]*page, freed map[pgid]bool,
kvStringer KVStringer, ch chan error) {
// Ignore inline buckets.
if b.root == 0 {
return
}
// Check every page used by this bucket.
b.tx.forEachPage(b.root, func(p *page, _ int, stack []pgid) {
if p.id > tx.meta.pgid {
ch <- fmt.Errorf("page %d: out of bounds: %d (stack: %v)", int(p.id), int(b.tx.meta.pgid), stack)
}
// Ensure each page is only referenced once.
for i := pgid(0); i <= pgid(p.overflow); i++ {
var id = p.id + i
if _, ok := reachable[id]; ok {
ch <- fmt.Errorf("page %d: multiple references (stack: %v)", int(id), stack)
}
reachable[id] = p
}
// We should only encounter un-freed leaf and branch pages.
if freed[p.id] {
ch <- fmt.Errorf("page %d: reachable freed", int(p.id))
} else if (p.flags&branchPageFlag) == 0 && (p.flags&leafPageFlag) == 0 {
ch <- fmt.Errorf("page %d: invalid type: %s (stack: %v)", int(p.id), p.typ(), stack)
}
})
tx.recursivelyCheckPages(b.root, kvStringer.KeyToString, ch)
// Check each bucket within this bucket.
_ = b.ForEachBucket(func(k []byte) error {
if child := b.Bucket(k); child != nil {
tx.checkBucket(child, reachable, freed, kvStringer, ch)
}
return nil
})
}
// recursivelyCheckPages confirms database consistency with respect to b-tree
// key order constraints:
// - keys on pages must be sorted
// - keys on children pages are between 2 consecutive keys on the parent's branch page).
func (tx *Tx) recursivelyCheckPages(pgId pgid, keyToString func([]byte) string, ch chan error) {
tx.recursivelyCheckPagesInternal(pgId, nil, nil, nil, keyToString, ch)
}
// recursivelyCheckPagesInternal verifies that all keys in the subtree rooted at `pgid` are:
// - >=`minKeyClosed` (can be nil)
// - <`maxKeyOpen` (can be nil)
// - Are in right ordering relationship to their parents.
// `pagesStack` is expected to contain IDs of pages from the tree root to `pgid` for the clean debugging message.
func (tx *Tx) recursivelyCheckPagesInternal(
pgId pgid, minKeyClosed, maxKeyOpen []byte, pagesStack []pgid,
keyToString func([]byte) string, ch chan error) (maxKeyInSubtree []byte) {
p := tx.page(pgId)
pagesStack = append(pagesStack, pgId)
switch {
case p.flags&branchPageFlag != 0:
// For branch page we navigate ranges of all subpages.
runningMin := minKeyClosed
for i := range p.branchPageElements() {
elem := p.branchPageElement(uint16(i))
verifyKeyOrder(elem.pgid, "branch", i, elem.key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack)
maxKey := maxKeyOpen
if i < len(p.branchPageElements())-1 {
maxKey = p.branchPageElement(uint16(i + 1)).key()
}
maxKeyInSubtree = tx.recursivelyCheckPagesInternal(elem.pgid, elem.key(), maxKey, pagesStack, keyToString, ch)
runningMin = maxKeyInSubtree
}
return maxKeyInSubtree
case p.flags&leafPageFlag != 0:
runningMin := minKeyClosed
for i := range p.leafPageElements() {
elem := p.leafPageElement(uint16(i))
verifyKeyOrder(pgId, "leaf", i, elem.key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack)
runningMin = elem.key()
}
if p.count > 0 {
return p.leafPageElement(p.count - 1).key()
}
default:
ch <- fmt.Errorf("unexpected page type for pgId:%d", pgId)
}
return maxKeyInSubtree
}
/***
* verifyKeyOrder checks whether an entry with given #index on pgId (pageType: "branch|leaf") that has given "key",
* is within range determined by (previousKey..maxKeyOpen) and reports found violations to the channel (ch).
*/
func verifyKeyOrder(pgId pgid, pageType string, index int, key []byte, previousKey []byte, maxKeyOpen []byte, ch chan error, keyToString func([]byte) string, pagesStack []pgid) {
if index == 0 && previousKey != nil && compareKeys(previousKey, key) > 0 {
ch <- fmt.Errorf("the first key[%d]=(hex)%s on %s page(%d) needs to be >= the key in the ancestor (%s). Stack: %v",
index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack)
}
if index > 0 {
cmpRet := compareKeys(previousKey, key)
if cmpRet > 0 {
ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found <) than previous element (hex)%s. Stack: %v",
index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack)
}
if cmpRet == 0 {
ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found =) than previous element (hex)%s. Stack: %v",
index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack)
}
}
if maxKeyOpen != nil && compareKeys(key, maxKeyOpen) >= 0 {
ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be < than key of the next element in ancestor (hex)%s. Pages stack: %v",
index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack)
}
}
// ===========================================================================================
type checkConfig struct {
kvStringer KVStringer
}
type CheckOption func(options *checkConfig)
func WithKVStringer(kvStringer KVStringer) CheckOption {
return func(c *checkConfig) {
c.kvStringer = kvStringer
}
}
// KVStringer allows to prepare human-readable diagnostic messages.
type KVStringer interface {
KeyToString([]byte) string
ValueToString([]byte) string
}
// HexKVStringer serializes both key & value to hex representation.
func HexKVStringer() KVStringer {
return hexKvStringer{}
}
type hexKvStringer struct{}
func (_ hexKvStringer) KeyToString(key []byte) string {
return hex.EncodeToString(key)
}
func (_ hexKvStringer) ValueToString(value []byte) string {
return hex.EncodeToString(value)
}