libwebsockets/lib/drivers/led/led-seq.c
Andy Green 63c1e8ba00 esp32-wrover-kit
Add lws_display and minimal example support for esp32-wrover to match wsp32-heltec-wb32

Since no usable buttons that don't affect something else on wrover kit, assumes
a button to 0V on GPIO14.
2020-06-30 19:35:41 +01:00

201 lines
5.8 KiB
C

/*
* Generic GPIO led
*
* Copyright (C) 2019 - 2020 Andy Green <andy@warmcat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "private-lib-core.h"
#include "drivers/led/private-lib-drivers-led.h"
/*
* 64 entry interpolated CIE correction
* https://en.wikipedia.org/wiki/Lightness
*/
uint16_t cie[] = {
0, 113, 227, 340, 454, 568, 688, 824, 976, 1146,
1335, 1543, 1772, 2023, 2296, 2592, 2914, 3260, 3633, 4034,
4463, 4921, 5409, 5929, 6482, 7067, 7687, 8341, 9032, 9761,
10527, 11332, 12178, 13064, 13993, 14964, 15980, 17040, 18146, 19299,
20500, 21750, 23049, 24400, 25802, 27256, 28765, 30328, 31946, 33622,
35354, 37146, 38996, 40908, 42881, 44916, 47014, 49177, 51406, 53700,
56062, 58492, 60992, 63561,
65535 /* for interpolation */
};
/*
* This is the default intensity correction function, it can be overridden
* per-led to eg, normalize intensity of different leds
*/
static lws_led_intensity_t
cie_antilog(lws_led_intensity_t lin)
{
return (cie[lin >> 10] * (0x3ff - (lin & 0x3ff)) +
cie[(lin >> 10) + 1] * (lin & 0x3ff)) / 0x3ff;
}
static void
lws_seq_advance(lws_led_state_t *lcs, lws_led_state_ch_t *ch)
{
if (!ch->seq)
return;
if (ch->phase_budget != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS &&
(ch->phase_budget < ch->step || !ch->phase_budget)) {
/* we are done */
ch->seq = NULL;
if (!(--lcs->timer_refcount)) {
#if defined(LWS_PLAT_TIMER_STOP)
LWS_PLAT_TIMER_STOP(lcs->timer);
#endif
}
return;
}
ch->ph += ch->step;
if (ch->phase_budget != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS)
ch->phase_budget -= ch->step;
}
static lws_led_intensity_t
lws_seq_sample(const lws_led_gpio_map_t *map, lws_led_state_chs_t *chs)
{
unsigned int i;
if (chs->seqs[LLSI_CURR].seq)
chs->seqs[LLSI_CURR].last = chs->seqs[LLSI_CURR].seq->
func(chs->seqs[LLSI_CURR].ph);
if (chs->seqs[LLSI_TRANS].seq) {
/*
* If a transition is ongoing, we need to use the transition
* intensity as the mixing factor between the still-live current
* and newly-live next sequences
*/
chs->seqs[LLSI_TRANS].last = chs->seqs[LLSI_TRANS].seq->
func(chs->seqs[LLSI_TRANS].ph);
if (chs->seqs[LLSI_NEXT].seq)
chs->seqs[LLSI_NEXT].last = chs->seqs[LLSI_NEXT].seq->
func(chs->seqs[LLSI_NEXT].ph);
i = (lws_led_intensity_t)(((
(unsigned int)chs->seqs[LLSI_CURR].last *
(65535 - chs->seqs[LLSI_TRANS].last) >> 16) +
(((unsigned int)chs->seqs[LLSI_NEXT].last *
(unsigned int)chs->seqs[LLSI_TRANS].last) >> 16)));
} else
i = chs->seqs[LLSI_CURR].last;
return map->intensity_correction ? map->intensity_correction(i) :
cie_antilog((lws_led_intensity_t)i);
}
void
lws_seq_timer_handle(lws_led_state_t *lcs)
{
lws_led_gpio_controller_t *lgc = lcs->controller;
lws_led_state_chs_t *chs = (lws_led_state_chs_t *)&lcs[1];
const lws_led_gpio_map_t *map = &lgc->led_map[0];
unsigned int n;
for (n = 0; n < lgc->count_leds; n++) {
lgc->led_ops.intensity(&lgc->led_ops, map->name,
lws_seq_sample(map, chs));
lws_seq_advance(lcs, &chs->seqs[LLSI_CURR]);
if (chs->seqs[LLSI_TRANS].seq) {
lws_seq_advance(lcs, &chs->seqs[LLSI_NEXT]);
lws_seq_advance(lcs, &chs->seqs[LLSI_TRANS]);
/*
* When we finished the transition, we can make the
* "next" sequence the current sequence and no need for
* a "next" or a transition any more.
*/
if (!chs->seqs[LLSI_TRANS].seq) {
chs->seqs[LLSI_CURR] = chs->seqs[LLSI_NEXT];
chs->seqs[LLSI_NEXT].seq = NULL;
}
}
map++;
chs++;
}
}
static int
lws_led_set_chs_seq(struct lws_led_state *lcs, lws_led_state_ch_t *dest,
const lws_led_sequence_def_t *def)
{
int steps;
dest->seq = def;
dest->ph = def->ledphase_offset;
dest->phase_budget = def->ledphase_total;
/*
* We need to compute the incremental phase angle step to cover the
* total number of phases in the indicated ms, incrementing at the
* timer rate of LWS_LED_SEQUENCER_UPDATE_RATE_HZ. Eg,
*
* 65536 phase steps (one cycle) in 2000ms at 30Hz timer rate means we
* will update 2000ms / 33ms = 60 times, so we must step at at
* 65536 / 60 = 1092 phase angle resolution
*/
steps = def->ms / LWS_LED_SEQUENCER_UPDATE_INTERVAL_MS;
dest->step = (def->ledphase_total != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS ?
def->ledphase_total : LWS_LED_FUNC_PHASE) / (steps ? steps : 1);
if (!lcs->timer_refcount++) {
#if defined(LWS_PLAT_TIMER_START)
LWS_PLAT_TIMER_START(lcs->timer);
#endif
}
return steps;
}
int
lws_led_transition(struct lws_led_state *lcs, const char *name,
const lws_led_sequence_def_t *next,
const lws_led_sequence_def_t *trans)
{
lws_led_state_chs_t *chs = (lws_led_state_chs_t *)&lcs[1];
int index = lws_led_gpio_lookup(&lcs->controller->led_ops, name);
if (index < 0)
return 1;
lws_led_set_chs_seq(lcs, &chs[index].seqs[LLSI_TRANS], trans);
lws_led_set_chs_seq(lcs, &chs[index].seqs[LLSI_NEXT], next);
return 0;
}