libwebsockets/lib/misc/fts/trie.c
Andy Green c9731c5f17 type comparisons: fixes
This is a huge patch that should be a global NOP.

For unix type platforms it enables -Wconversion to issue warnings (-> error)
for all automatic casts that seem less than ideal but are normally concealed
by the toolchain.

This is things like passing an int to a size_t argument.  Once enabled, I
went through all args on my default build (which build most things) and
tried to make the removed default cast explicit.

With that approach it neither change nor bloat the code, since it compiles
to whatever it was doing before, just with the casts made explicit... in a
few cases I changed some length args from int to size_t but largely left
the causes alone.

From now on, new code that is relying on less than ideal casting
will complain and nudge me to improve it by warnings.
2021-01-05 10:56:38 +00:00

1373 lines
32 KiB
C

/*
* libwebsockets - small server side websockets and web server implementation
*
* Copyright (C) 2010 - 2019 Andy Green <andy@warmcat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* The functions allow
*
* - collecting a concordance of strings from one or more files (eg, a
* directory of files) into a single in-memory, lac-backed trie;
*
* - to optimize and serialize the in-memory trie to an fd;
*
* - to very quickly report any instances of a string in any of the files
* indexed by the trie, by a seeking around a serialized trie fd, without
* having to load it all in memory
*/
#include "private-lib-core.h"
#include "private-lib-misc-fts.h"
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/types.h>
struct lws_fts_entry;
/* notice these are stored in t->lwsac_input_head which has input file scope */
struct lws_fts_filepath {
struct lws_fts_filepath *next;
struct lws_fts_filepath *prev;
char filepath[256];
jg2_file_offset ofs;
jg2_file_offset line_table_ofs;
int filepath_len;
int file_index;
int total_lines;
int priority;
};
/* notice these are stored in t->lwsac_input_head which has input file scope */
struct lws_fts_lines {
struct lws_fts_lines *lines_next;
/*
* amount of line numbers needs to meet average count for best
* efficiency.
*
* Line numbers are stored in VLI format since if we don't, around half
* the total lac allocation consists of struct lws_fts_lines...
* size chosen to maintain 8-byte struct alignment
*/
uint8_t vli[119];
char count;
};
/* this represents the instances of a symbol inside a given filepath */
struct lws_fts_instance_file {
/* linked-list of tifs generated for current file */
struct lws_fts_instance_file *inst_file_next;
struct lws_fts_entry *owner;
struct lws_fts_lines *lines_list, *lines_tail;
uint32_t file_index;
uint32_t total;
/*
* optimization for the common case there's only 1 - ~3 matches, so we
* don't have to allocate any lws_fts_lines struct
*
* Using 8 bytes total for this maintains 8-byte struct alignment...
*/
uint8_t vli[7];
char count;
};
/*
* this is the main trie in-memory allocation object
*/
struct lws_fts_entry {
struct lws_fts_entry *parent;
struct lws_fts_entry *child_list;
struct lws_fts_entry *sibling;
/*
* care... this points to content in t->lwsac_input_head, it goes
* out of scope when the input file being indexed completes
*/
struct lws_fts_instance_file *inst_file_list;
jg2_file_offset ofs_last_inst_file;
char *suffix; /* suffix string or NULL if one char (in .c) */
jg2_file_offset ofs;
uint32_t child_count;
uint32_t instance_count;
uint32_t agg_inst_count;
uint32_t agg_child_count;
uint32_t suffix_len;
unsigned char c;
};
/* there's only one of these per trie file */
struct lws_fts {
struct lwsac *lwsac_head;
struct lwsac *lwsac_input_head;
struct lws_fts_entry *root;
struct lws_fts_filepath *filepath_list;
struct lws_fts_filepath *fp;
struct lws_fts_entry *parser;
struct lws_fts_entry *root_lookup[256];
/*
* head of linked-list of tifs generated for current file
* care... this points to content in t->lwsac_input_head
*/
struct lws_fts_instance_file *tif_list;
jg2_file_offset c; /* length of output file so far */
uint64_t agg_trie_creation_us;
uint64_t agg_raw_input;
uint64_t worst_lwsac_input_size;
int last_file_index;
int chars_in_line;
jg2_file_offset last_block_len_ofs;
int line_number;
int lines_in_unsealed_linetable;
int next_file_index;
int count_entries;
int fd;
unsigned int agg_pos;
unsigned int str_match_pos;
unsigned char aggregate;
unsigned char agg[128];
};
/* since the kernel case allocates >300MB, no point keeping this too low */
#define TRIE_LWSAC_BLOCK_SIZE (1024 * 1024)
#define spill(margin, force) \
if (bp && ((uint32_t)bp >= (sizeof(buf) - (size_t)(margin)) || (force))) { \
if ((int)write(t->fd, buf, (size_t)bp) != bp) { \
lwsl_err("%s: write %d failed (%d)\n", __func__, \
bp, errno); \
return 1; \
} \
t->c += (unsigned int)bp; \
bp = 0; \
}
static int
g32(unsigned char *b, uint32_t d)
{
*b++ = (uint8_t)((d >> 24) & 0xff);
*b++ = (uint8_t)((d >> 16) & 0xff);
*b++ = (uint8_t)((d >> 8) & 0xff);
*b = (uint8_t)(d & 0xff);
return 4;
}
static int
g16(unsigned char *b, int d)
{
*b++ = (uint8_t)((d >> 8) & 0xff);
*b = (uint8_t)(d & 0xff);
return 2;
}
static int
wq32(unsigned char *b, uint32_t d)
{
unsigned char *ob = b;
if (d > (1 << 28) - 1)
*b++ = (uint8_t)(((d >> 28) | 0x80) & 0xff);
if (d > (1 << 21) - 1)
*b++ = (uint8_t)(((d >> 21) | 0x80) & 0xff);
if (d > (1 << 14) - 1)
*b++ = (uint8_t)(((d >> 14) | 0x80) & 0xff);
if (d > (1 << 7) - 1)
*b++ = (uint8_t)(((d >> 7) | 0x80) & 0xff);
*b++ = (uint8_t)(d & 0x7f);
return lws_ptr_diff(b, ob);
}
/* read a VLI, return the number of bytes used */
int
rq32(unsigned char *b, uint32_t *d)
{
unsigned char *ob = b;
uint32_t t = 0;
t = *b & 0x7f;
if (*(b++) & 0x80) {
t = (t << 7) | (*b & 0x7f);
if (*(b++) & 0x80) {
t = (t << 7) | (*b & 0x7f);
if (*(b++) & 0x80) {
t = (t << 7) | (*b & 0x7f);
if (*(b++) & 0x80) {
t = (t << 7) | (*b & 0x7f);
b++;
}
}
}
}
*d = t;
return (int)(b - ob);
}
struct lws_fts *
lws_fts_create(int fd)
{
struct lws_fts *t;
struct lwsac *lwsac_head = NULL;
unsigned char buf[TRIE_FILE_HDR_SIZE];
t = lwsac_use(&lwsac_head, sizeof(*t), TRIE_LWSAC_BLOCK_SIZE);
if (!t)
return NULL;
memset(t, 0, sizeof(*t));
t->fd = fd;
t->lwsac_head = lwsac_head;
t->root = lwsac_use(&lwsac_head, sizeof(*t->root),
TRIE_LWSAC_BLOCK_SIZE);
if (!t->root)
goto unwind;
memset(t->root, 0, sizeof(*t->root));
t->parser = t->root;
t->last_file_index = -1;
t->line_number = 1;
t->filepath_list = NULL;
memset(t->root_lookup, 0, sizeof(*t->root_lookup));
/* write the header */
buf[0] = 0xca;
buf[1] = 0x7a;
buf[2] = 0x5f;
buf[3] = 0x75;
/* (these are filled in with correct data at the end) */
/* file offset to root trie entry */
g32(&buf[4], 0);
/* file length when it was created */
g32(&buf[8], 0);
/* fileoffset to the filepath table */
g32(&buf[0xc], 0);
/* count of filepaths */
g32(&buf[0x10], 0);
if (write(t->fd, buf, TRIE_FILE_HDR_SIZE) != TRIE_FILE_HDR_SIZE) {
lwsl_err("%s: trie header write failed\n", __func__);
goto unwind;
}
t->c = TRIE_FILE_HDR_SIZE;
return t;
unwind:
lwsac_free(&lwsac_head);
return NULL;
}
void
lws_fts_destroy(struct lws_fts **trie)
{
struct lwsac *lwsac_head = (*trie)->lwsac_head;
lwsac_free(&(*trie)->lwsac_input_head);
lwsac_free(&lwsac_head);
*trie = NULL;
}
int
lws_fts_file_index(struct lws_fts *t, const char *filepath, int filepath_len,
int priority)
{
struct lws_fts_filepath *fp = t->filepath_list;
#if 0
while (fp) {
if (fp->filepath_len == filepath_len &&
!strcmp(fp->filepath, filepath))
return fp->file_index;
fp = fp->next;
}
#endif
fp = lwsac_use(&t->lwsac_head, sizeof(*fp), TRIE_LWSAC_BLOCK_SIZE);
if (!fp)
return -1;
fp->next = t->filepath_list;
t->filepath_list = fp;
strncpy(fp->filepath, filepath, sizeof(fp->filepath) - 1);
fp->filepath[sizeof(fp->filepath) - 1] = '\0';
fp->filepath_len = filepath_len;
fp->file_index = t->next_file_index++;
fp->line_table_ofs = t->c;
fp->priority = priority;
fp->total_lines = 0;
t->fp = fp;
return fp->file_index;
}
static struct lws_fts_entry *
lws_fts_entry_child_add(struct lws_fts *t, unsigned char c,
struct lws_fts_entry *parent)
{
struct lws_fts_entry *e, **pe;
e = lwsac_use(&t->lwsac_head, sizeof(*e), TRIE_LWSAC_BLOCK_SIZE);
if (!e)
return NULL;
memset(e, 0, sizeof(*e));
e->c = c;
parent->child_count++;
e->parent = parent;
t->count_entries++;
/* keep the parent child list in ascending sort order for c */
pe = &parent->child_list;
while (*pe) {
assert((*pe)->parent == parent);
if ((*pe)->c > c) {
/* add it before */
e->sibling = *pe;
*pe = e;
break;
}
pe = &(*pe)->sibling;
}
if (!*pe) {
/* add it at the end */
e->sibling = NULL;
*pe = e;
}
return e;
}
static int
finalize_per_input(struct lws_fts *t)
{
struct lws_fts_instance_file *tif;
unsigned char buf[8192];
uint64_t lwsac_input_size;
jg2_file_offset temp;
int bp = 0;
bp += g16(&buf[bp], 0);
bp += g16(&buf[bp], 0);
bp += g32(&buf[bp], 0);
if ((int)write(t->fd, buf, (size_t)bp) != bp)
return 1;
t->c += (unsigned int)bp;
bp = 0;
/*
* Write the generated file index + instances (if any)
*
* Notice the next same-parent file instance fileoffset list is
* backwards, so it does not require seeks to fill in. The first
* entry has 0 but the second entry points to the first entry (whose
* fileoffset is known).
*
* After all the file instance structs are finalized,
* .ofs_last_inst_file contains the fileoffset of that child's tif
* list head in the file.
*
* The file instances are written to disk in the order that the files
* were indexed, along with their prev pointers inline.
*/
tif = t->tif_list;
while (tif) {
struct lws_fts_lines *i;
spill((3 * MAX_VLI) + tif->count, 0);
temp = tif->owner->ofs_last_inst_file;
if (tif->total)
tif->owner->ofs_last_inst_file = t->c + (unsigned int)bp;
assert(!temp || (temp > TRIE_FILE_HDR_SIZE && temp < t->c));
/* fileoffset of prev instance file for this entry, or 0 */
bp += wq32(&buf[bp], temp);
bp += wq32(&buf[bp], tif->file_index);
bp += wq32(&buf[bp], tif->total);
/* remove any pointers into this disposable lac footprint */
tif->owner->inst_file_list = NULL;
memcpy(&buf[bp], &tif->vli, (size_t)tif->count);
bp += tif->count;
i = tif->lines_list;
while (i) {
spill(i->count, 0);
memcpy(&buf[bp], &i->vli, (size_t)i->count);
bp += i->count;
i = i->lines_next;
}
tif = tif->inst_file_next;
}
spill(0, 1);
assert(lseek(t->fd, 0, SEEK_END) == (off_t)t->c);
if (t->lwsac_input_head) {
lwsac_input_size = lwsac_total_alloc(t->lwsac_input_head);
if (lwsac_input_size > t->worst_lwsac_input_size)
t->worst_lwsac_input_size = lwsac_input_size;
}
/*
* those per-file allocations are all on a separate lac so we can
* free it cleanly afterwards
*/
lwsac_free(&t->lwsac_input_head);
/* and lose the pointer into the deallocated lac */
t->tif_list = NULL;
return 0;
}
/*
* 0 = punctuation, whitespace, brackets etc
* 1 = character inside symbol set
* 2 = upper-case character inside symbol set
*/
static char classify[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 1, //1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
#if 0
static const char *
name_entry(struct lws_fts_entry *e1, char *s, int len)
{
struct lws_fts_entry *e2;
int n = len;
s[--n] = '\0';
e2 = e1;
while (e2) {
if (e2->suffix) {
if ((int)e2->suffix_len < n) {
n -= e2->suffix_len;
memcpy(&s[n], e2->suffix, e2->suffix_len);
}
} else {
n--;
s[n] = e2->c;
}
e2 = e2->parent;
}
return &s[n + 1];
}
#endif
/*
* as we parse the input, we create a line length table for the file index.
* Only the file header has been written before we start doing this.
*/
int
lws_fts_fill(struct lws_fts *t, uint32_t file_index, const char *buf,
size_t len)
{
unsigned long long tf = (unsigned long long)lws_now_usecs();
unsigned char c, linetable[256], vlibuf[8];
struct lws_fts_entry *e, *e1, *dcl;
struct lws_fts_instance_file *tif;
int bp = 0, sline, chars, m;
char *osuff, skipline = 0;
struct lws_fts_lines *tl;
unsigned int olen, n;
off_t lbh;
if ((int)file_index != t->last_file_index) {
if (t->last_file_index >= 0)
finalize_per_input(t);
t->last_file_index = (int)file_index;
t->line_number = 1;
t->chars_in_line = 0;
t->lines_in_unsealed_linetable = 0;
}
t->agg_raw_input += len;
resume:
chars = 0;
lbh = (off_t)t->c;
sline = t->line_number;
bp += g16(&linetable[bp], 0);
bp += g16(&linetable[bp], 0);
bp += g32(&linetable[bp], 0);
while (len) {
char go_around = 0;
if (t->lines_in_unsealed_linetable >= LWS_FTS_LINES_PER_CHUNK)
break;
len--;
c = (unsigned char)*buf++;
t->chars_in_line++;
if (c == '\n') {
skipline = 0;
t->filepath_list->total_lines++;
t->lines_in_unsealed_linetable++;
t->line_number++;
bp += wq32(&linetable[bp], (uint32_t)t->chars_in_line);
if ((unsigned int)bp > sizeof(linetable) - 6) {
if ((int)write(t->fd, linetable, (unsigned int)bp) != bp) {
lwsl_err("%s: linetable write failed\n",
__func__);
return 1;
}
t->c += (unsigned int)bp;
bp = 0;
// assert(lseek(t->fd, 0, SEEK_END) == t->c);
}
chars += t->chars_in_line;
t->chars_in_line = 0;
/*
* Detect overlength lines and skip them (eg, BASE64
* in css etc)
*/
if (len > 200) {
n = 0;
m = 0;
while (n < 200 && m < 80 && buf[n] != '\n') {
if (buf[n] == ' ' || buf[n] == '\t')
m = 0;
n++;
m++;
}
/* 80 lines no whitespace, or >=200-char line */
if (m == 80 || n == 200)
skipline = 1;
}
goto seal;
}
if (skipline)
continue;
m = classify[(int)c];
if (!m)
goto seal;
if (m == 2)
c = (unsigned char)((char)c + 'a' - 'A');
if (t->aggregate) {
/*
* We created a trie entry for an earlier char in this
* symbol already. So we know at the moment, any
* further chars in the symbol are the only children.
*
* Aggregate them and add them as a string suffix to
* the trie symbol at the end (when we know how much to
* allocate).
*/
if (t->agg_pos < sizeof(t->agg) - 1)
/* symbol is not too long to stash */
t->agg[t->agg_pos++] = c;
continue;
}
if (t->str_match_pos) {
go_around = 1;
goto seal;
}
/* zeroth-iteration child matching */
if (t->parser == t->root) {
e = t->root_lookup[(int)c];
if (e) {
t->parser = e;
continue;
}
} else {
/* look for the char amongst the children */
e = t->parser->child_list;
while (e) {
/* since they're alpha ordered... */
if (e->c > c) {
e = NULL;
break;
}
if (e->c == c) {
t->parser = e;
if (e->suffix)
t->str_match_pos = 1;
break;
}
e = e->sibling;
}
if (e)
continue;
}
/*
* we are blazing a new trail, add a new child representing
* the whole suffix that couldn't be matched until now.
*/
e = lws_fts_entry_child_add(t, c, t->parser);
if (!e) {
lwsl_err("%s: lws_fts_entry_child_add failed\n",
__func__);
return 1;
}
/* if it's the root node, keep the root_lookup table in sync */
if (t->parser == t->root)
t->root_lookup[(int)c] = e;
/* follow the new path */
t->parser = e;
{
struct lws_fts_entry **pe = &e->child_list;
while (*pe) {
assert((*pe)->parent == e);
pe = &(*pe)->sibling;
}
}
/*
* If there are any more symbol characters coming, just
* create a suffix string on t->parser instead of what must
* currently be single-child nodes, since we just created e
* as a child with a single character due to no existing match
* on that single character... so if no match on 'h' with this
* guy's parent, we created e that matches on the single char
* 'h'. If the symbol continues ... 'a' 'p' 'p' 'y', then
* instead of creating singleton child nodes under e,
* modify e to match on the whole string suffix "happy".
*
* If later "hoppy" appears, we will remove the suffix on e,
* so it reverts to a char match for 'h', add singleton children
* for 'a' and 'o', and attach a "ppy" suffix child to each of
* those.
*
* We want to do this so we don't have to allocate trie entries
* for every char in the string to save memory and consequently
* time.
*
* Don't try this optimization if the parent is the root node...
* it's not compatible with it's root_lookup table and it's
* highly likely children off the root entry are going to have
* to be fragmented.
*/
if (e->parent != t->root) {
t->aggregate = 1;
t->agg_pos = 0;
}
continue;
seal:
if (t->str_match_pos) {
/*
* We're partway through matching an elaborated string
* on a child, not just a character. String matches
* only exist when we met a child entry that only had
* one path until now... so we had an 'h', and the
* only child had a string "hello".
*
* We are following the right path and will not need
* to back up, but we may find as we go we have the
* first instance of a second child path, eg, "help".
*
* When we get to the 'p', we have to split what was
* the only string option "hello" into "hel" and then
* two child entries, for "lo" and 'p'.
*/
if (c == t->parser->suffix[t->str_match_pos++]) {
if (t->str_match_pos < t->parser->suffix_len)
continue;
/*
* We simply matched everything, continue
* parsing normally from this trie entry.
*/
t->str_match_pos = 0;
continue;
}
/*
* So... we hit a mismatch somewhere... it means we
* have to split this string entry.
*
* We know the first char actually matched in order to
* start down this road. So for the current trie entry,
* we need to truncate his suffix at the char before
* this mismatched one, where we diverged (if the
* second char, simply remove the suffix string from the
* current trie entry to turn it back to a 1-char match)
*
* The original entry, which becomes the lhs post-split,
* is t->parser.
*/
olen = t->parser->suffix_len;
osuff = t->parser->suffix;
if (t->str_match_pos == 2)
t->parser->suffix = NULL;
else
t->parser->suffix_len = t->str_match_pos - 1;
/*
* Then we need to create a new child trie entry that
* represents the remainder of the original string
* path that we didn't match. For the "hello" /
* "help" case, this guy will have "lo".
*
* Any instances or children (not siblings...) that were
* attached to the original trie entry must be detached
* first and then migrate to this new guy that completes
* the original string.
*/
dcl = t->parser->child_list;
m = (int)t->parser->child_count;
t->parser->child_list = NULL;
t->parser->child_count = 0;
e = lws_fts_entry_child_add(t, (unsigned char)
osuff[t->str_match_pos - 1], t->parser);
if (!e) {
lwsl_err("%s: lws_fts_entry_child_add fail1\n",
__func__);
return 1;
}
e->child_list = dcl;
e->child_count = (uint32_t)m;
/*
* any children we took over must point to us as the
* parent now they appear on our child list
*/
e1 = e->child_list;
while (e1) {
e1->parent = e;
e1 = e1->sibling;
}
/*
* We detached any children, gave them to the new guy
* and replaced them with just our new guy
*/
t->parser->child_count = 1;
t->parser->child_list = e;
/*
* any instances that belonged to the original entry we
* are splitting now must be reassigned to the end
* part
*/
e->inst_file_list = t->parser->inst_file_list;
if (e->inst_file_list)
e->inst_file_list->owner = e;
t->parser->inst_file_list = NULL;
e->instance_count = t->parser->instance_count;
t->parser->instance_count = 0;
e->ofs_last_inst_file = t->parser->ofs_last_inst_file;
t->parser->ofs_last_inst_file = 0;
if (t->str_match_pos != olen) {
/* we diverged partway */
e->suffix = &osuff[t->str_match_pos - 1];
e->suffix_len = olen - (t->str_match_pos - 1);
}
/*
* if the current char is a terminal, skip creating a
* new way forward.
*/
if (classify[(int)c]) {
/*
* Lastly we need to create a new child trie
* entry that represents the new way forward
* from the point that we diverged. For the
* "hello" / "help" case, this guy will start
* as a child of "hel" with the single
* character match 'p'.
*
* Since he becomes the current parser context,
* more symbol characters may be coming to make
* him into, eg, "helping", in which case he
* will acquire a suffix eventually of "ping"
* via the aggregation stuff
*/
e = lws_fts_entry_child_add(t, c, t->parser);
if (!e) {
lwsl_err("%s: child_add fail2\n",
__func__);
return 1;
}
}
/* go on following this path */
t->parser = e;
t->aggregate = 1;
t->agg_pos = 0;
t->str_match_pos = 0;
if (go_around)
continue;
/* this is intended to be a seal */
}
/* end of token */
if (t->aggregate && t->agg_pos) {
/* if nothing in agg[]: leave as single char match */
/* otherwise copy out the symbol aggregation */
t->parser->suffix = lwsac_use(&t->lwsac_head,
t->agg_pos + 1,
TRIE_LWSAC_BLOCK_SIZE);
if (!t->parser->suffix) {
lwsl_err("%s: lac for suffix failed\n",
__func__);
return 1;
}
/* add the first char at the beginning */
*t->parser->suffix = (char)t->parser->c;
/* and then add the agg buffer stuff */
memcpy(t->parser->suffix + 1, t->agg, t->agg_pos);
t->parser->suffix_len = t->agg_pos + 1;
}
t->aggregate = 0;
if (t->parser == t->root) /* multiple terminal chars */
continue;
if (!t->parser->inst_file_list ||
t->parser->inst_file_list->file_index != file_index) {
tif = lwsac_use(&t->lwsac_input_head, sizeof(*tif),
TRIE_LWSAC_BLOCK_SIZE);
if (!tif) {
lwsl_err("%s: lac for tif failed\n",
__func__);
return 1;
}
tif->file_index = file_index;
tif->owner = t->parser;
tif->lines_list = NULL;
tif->lines_tail = NULL;
tif->total = 0;
tif->count = 0;
tif->inst_file_next = t->tif_list;
t->tif_list = tif;
t->parser->inst_file_list = tif;
}
/*
* A naive allocation strategy for this leads to 50% of the
* total inmem lac allocation being for line numbers...
*
* It's mainly solved by only holding the instance and line
* number tables for the duration of a file being input, as soon
* as one input file is finished it is written to disk.
*
* For the common case of 1 - ~3 matches the line number are
* stored in a small VLI array inside the filepath inst. If the
* next one won't fit, it allocates a line number struct with
* more vli space and continues chaining those if needed.
*/
n = (unsigned int)wq32(vlibuf, (uint32_t)t->line_number);
tif = t->parser->inst_file_list;
if (!tif->lines_list) {
/* we are still trying to use the file inst vli */
if (LWS_ARRAY_SIZE(tif->vli) - (size_t)tif->count >= n) {
tif->count = (char)((char)tif->count + (char)wq32(tif->vli + tif->count,
(uint32_t)t->line_number));
goto after;
}
/* we are going to have to allocate */
}
/* can we add to an existing line numbers struct? */
if (tif->lines_tail &&
LWS_ARRAY_SIZE(tif->lines_tail->vli) -
(unsigned char)tif->lines_tail->count >= n) {
tif->lines_tail->count = (char)((char)tif->lines_tail->count + (char)wq32(tif->lines_tail->vli +
tif->lines_tail->count,
(uint32_t)t->line_number));
goto after;
}
/* either no existing line numbers struct at tail, or full */
/* have to create a(nother) line numbers struct */
tl = lwsac_use(&t->lwsac_input_head, sizeof(*tl),
TRIE_LWSAC_BLOCK_SIZE);
if (!tl) {
lwsl_err("%s: lac for tl failed\n", __func__);
return 1;
}
tl->lines_next = NULL;
if (tif->lines_tail)
tif->lines_tail->lines_next = tl;
tif->lines_tail = tl;
if (!tif->lines_list)
tif->lines_list = tl;
tl->count = (char)wq32(tl->vli, (uint32_t)t->line_number);
after:
tif->total++;
#if 0
{
char s[128];
const char *ne = name_entry(t->parser, s, sizeof(s));
if (!strcmp(ne, "describ")) {
lwsl_err(" %s %d\n", ne, t->str_match_pos);
write(1, buf - 10, 20);
}
}
#endif
t->parser->instance_count++;
t->parser = t->root;
t->str_match_pos = 0;
}
/* seal off the line length table block */
if (bp) {
if ((int)write(t->fd, linetable, (size_t)bp) != bp)
return 1;
t->c += (unsigned int)bp;
bp = 0;
}
if (lseek(t->fd, lbh, SEEK_SET) < 0) {
lwsl_err("%s: seek to 0x%llx failed\n", __func__,
(unsigned long long)lbh);
return 1;
}
g16(linetable, (uint16_t)(t->c - (jg2_file_offset)lbh));
g16(linetable + 2, (uint16_t)(t->line_number - sline));
g32(linetable + 4, (uint32_t)chars);
if ((int)write(t->fd, linetable, 8) != 8) {
lwsl_err("%s: write linetable header failed\n", __func__);
return 1;
}
assert(lseek(t->fd, 0, SEEK_END) == (off_t)t->c);
if (lseek(t->fd, (off_t)t->c, SEEK_SET) < 0) {
lwsl_err("%s: end seek failed\n", __func__);
return 1;
}
bp = 0;
if (len) {
t->lines_in_unsealed_linetable = 0;
goto resume;
}
/* dump the collected per-input instance and line data, and free it */
t->agg_trie_creation_us += (uint64_t)((uint64_t)lws_now_usecs() - tf);
return 0;
}
/* refer to ./README.md */
int
lws_fts_serialize(struct lws_fts *t)
{
struct lws_fts_filepath *fp = t->filepath_list, *ofp;
unsigned long long tf = (unsigned long long)lws_now_usecs();
struct lws_fts_entry *e, *e1, *s[256];
unsigned char buf[8192], stasis;
int n, bp, sp = 0, do_parent;
(void)tf;
finalize_per_input(t);
/*
* Compute aggregated instance counts (parents should know the total
* number of instances below each child path)
*
*
* If we have
*
* (root) -> (c1) -> (c2)
* -> (c3)
*
* we need to visit the nodes in the order
*
* c2, c1, c3, root
*/
sp = 0;
s[0] = t->root;
do_parent = 0;
while (sp >= 0) {
int n;
/* aggregate in every antecedent */
for (n = 0; n <= sp; n++) {
s[n]->agg_inst_count += s[sp]->instance_count;
s[n]->agg_child_count += s[sp]->child_count;
}
/* handle any children before the parent */
if (s[sp]->child_list) {
if (sp + 1 == LWS_ARRAY_SIZE(s)) {
lwsl_err("Stack too deep\n");
goto bail;
}
s[sp + 1] = s[sp]->child_list;
sp++;
continue;
}
do {
if (s[sp]->sibling) {
s[sp] = s[sp]->sibling;
break;
} else
sp--;
} while (sp >= 0);
}
/* dump the filepaths and set prev */
fp = t->filepath_list;
ofp = NULL;
bp = 0;
while (fp) {
fp->ofs = t->c + (unsigned int)bp;
n = (int)strlen(fp->filepath);
spill(15 + n, 0);
bp += wq32(&buf[bp], fp->line_table_ofs);
bp += wq32(&buf[bp], (uint32_t)fp->total_lines);
bp += wq32(&buf[bp], (uint32_t)n);
memcpy(&buf[bp], fp->filepath, (unsigned int)n);
bp += n;
fp->prev = ofp;
ofp = fp;
fp = fp->next;
}
spill(0, 1);
/* record the fileoffset of the filepath map and filepath count */
if (lseek(t->fd, 0xc, SEEK_SET) < 0)
goto bail_seek;
g32(buf, t->c + (unsigned int)bp);
g32(buf + 4, (uint32_t)t->next_file_index);
if ((int)write(t->fd, buf, 8) != 8)
goto bail;
if (lseek(t->fd, (off_t)(t->c + (unsigned int)bp), SEEK_SET) < 0)
goto bail_seek;
/* dump the filepath map, starting from index 0, which is at the tail */
fp = ofp;
bp = 0;
while (fp) {
spill(5, 0);
g32(buf + bp, fp->ofs);
bp += 4;
fp = fp->prev;
}
spill(0, 1);
/*
* The trie entries in reverse order... because of the reversal, we have
* always written children first, and marked them with their file offset
* before we come to refer to them.
*/
bp = 0;
sp = 0;
s[0] = t->root;
do_parent = 0;
while (s[sp]) {
/* handle any children before the parent */
if (!do_parent && s[sp]->child_list) {
if (sp + 1 == LWS_ARRAY_SIZE(s)) {
lwsl_err("Stack too deep\n");
goto bail;
}
s[sp + 1] = s[sp]->child_list;
sp++;
continue;
}
/* leaf nodes with no children */
e = s[sp];
e->ofs = t->c + (unsigned int)bp;
/* write the trie entry header */
spill((3 * MAX_VLI), 0);
bp += wq32(&buf[bp], e->ofs_last_inst_file);
bp += wq32(&buf[bp], e->child_count);
bp += wq32(&buf[bp], e->instance_count);
bp += wq32(&buf[bp], e->agg_inst_count);
/* sort the children in order of highest aggregate hits first */
do {
struct lws_fts_entry **pe, *te1, *te2;
stasis = 1;
/* bubble sort keeps going until nothing changed */
pe = &e->child_list;
while (*pe) {
te1 = *pe;
te2 = te1->sibling;
if (te2 && te1->agg_inst_count <
te2->agg_inst_count) {
stasis = 0;
*pe = te2;
te1->sibling = te2->sibling;
te2->sibling = te1;
}
pe = &(*pe)->sibling;
}
} while (!stasis);
/* write the children */
e1 = e->child_list;
while (e1) {
spill((5 * MAX_VLI) + e1->suffix_len + 1, 0);
bp += wq32(&buf[bp], e1->ofs);
bp += wq32(&buf[bp], e1->instance_count);
bp += wq32(&buf[bp], e1->agg_inst_count);
bp += wq32(&buf[bp], e1->agg_child_count);
if (e1->suffix) { /* string */
bp += wq32(&buf[bp], e1->suffix_len);
memmove(&buf[bp], e1->suffix, e1->suffix_len);
bp += (int)e1->suffix_len;
} else { /* char */
bp += wq32(&buf[bp], 1);
buf[bp++] = e1->c;
}
#if 0
if (e1->suffix && e1->suffix_len == 3 &&
!memcmp(e1->suffix, "cri", 3)) {
struct lws_fts_entry *e2;
e2 = e1;
while (e2){
if (e2->suffix)
lwsl_notice("%s\n", e2->suffix);
else
lwsl_notice("%c\n", e2->c);
e2 = e2->parent;
}
lwsl_err("*** %c CRI inst %d ch %d\n", e1->parent->c,
e1->instance_count, e1->child_count);
}
#endif
e1 = e1->sibling;
}
/* if there are siblings, do those next */
if (do_parent) {
do_parent = 0;
sp--;
}
if (s[sp]->sibling)
s[sp] = s[sp]->sibling;
else {
/* if there are no siblings, do the parent */
do_parent = 1;
s[sp] = s[sp]->parent;
}
}
spill(0, 1);
assert(lseek(t->fd, 0, SEEK_END) == (off_t)t->c);
/* drop the correct root trie offset + file length into the header */
if (lseek(t->fd, 4, SEEK_SET) < 0) {
lwsl_err("%s: unable to seek\n", __func__);
goto bail;
}
g32(buf, t->root->ofs);
g32(buf + 4, t->c);
if (write(t->fd, buf, 0x8) != 0x8)
goto bail;
lwsl_notice("%s: index %d files (%uMiB) cpu time %dms, "
"alloc: %dKiB + %dKiB, "
"serialize: %dms, file: %dKiB\n", __func__,
t->next_file_index,
(int)(t->agg_raw_input / (1024 * 1024)),
(int)(t->agg_trie_creation_us / 1000),
(int)(lwsac_total_alloc(t->lwsac_head) / 1024),
(int)(t->worst_lwsac_input_size / 1024),
(int)(((uint64_t)lws_now_usecs() - tf) / 1000),
(int)(t->c / 1024));
return 0;
bail_seek:
lwsl_err("%s: problem seekings\n", __func__);
bail:
return 1;
}