libwebsockets/lib/plat/freertos/esp32/drivers/spi-esp32.c
Andy Green e3743d47b4 lws_spi: Add esp32 DMA support
This provides an alternative esp32-specific SPI driver with ops that can be
swapped in place of the gpio bitbang one.

The pinmux info and lws gpio driver and other data in the spi bitbang
struct are used as-is by the DMA one.

New ops are provided which are able to allocate and free DMA-able memory so
the device drivers can prepare directly usable buffers.  Bounce through to
DMA-able buffers is also transparently supported.
2022-03-25 08:18:30 +00:00

298 lines
7.4 KiB
C

/*
* esp32 / esp-idf SPI
*
* Copyright (C) 2019 - 2022 Andy Green <andy@warmcat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <libwebsockets.h>
#include <driver/spi_master.h>
#include <esp_heap_caps.h>
typedef struct {
uint32_t *dma_stash;
size_t dma_stash_len;
spi_transaction_t esp_txn;
} lws_spi_async_txn_t;
static spi_device_handle_t sdh[4][4]; /* [unit][cs index] */
static volatile lws_spi_async_txn_t sat[7];
void *
lws_esp32_spi_alloc_dma(const struct lws_spi_ops *ctx, size_t size)
{
return heap_caps_malloc(size, MALLOC_CAP_32BIT | MALLOC_CAP_DMA);
}
void
lws_esp32_spi_free_dma(const struct lws_spi_ops *ctx, void **p)
{
if (*p) {
heap_caps_free(*p);
*p = NULL;
}
}
static void IRAM_ATTR
lcd_spi_pre_transfer_callback(spi_transaction_t *t)
{
int n = (int)(intptr_t)((volatile spi_transaction_t *)t)->user;
gpio_set_level((n >> 8) & 0xff, n & 1);
}
static void IRAM_ATTR
lcd_spi_post_transfer_callback(spi_transaction_t *t)
{
((volatile spi_transaction_t *)t)->user = NULL;
}
static lws_spi_async_txn_t *
find_idle_sat(void)
{
size_t n = 0;
for (n = 0; n < LWS_ARRAY_SIZE(sat); n++)
if (!sat[n].esp_txn.user) {
memset((void *)&sat[n].esp_txn, 0, sizeof(sat[0].esp_txn));
return (lws_spi_async_txn_t *)&sat[n];
}
return NULL;
}
int
lws_esp32_spi_in_flight(const struct lws_spi_ops *ctx)
{
size_t n = 0;
int inf = 0;
for (n = 0; n < LWS_ARRAY_SIZE(sat); n++)
if (sat[n].esp_txn.user)
inf++;
return inf;
}
int
lws_esp32_spi_init(const lws_spi_ops_t *spi_ops)
{
lws_bb_spi_t *bb = lws_container_of(spi_ops, lws_bb_spi_t, bb_ops);
spi_bus_config_t bc;
/* This inits the specified SPI BUS */
memset(&bc, 0, sizeof(bc));
bc.mosi_io_num = -1; // bb->mosi;
bc.miso_io_num = -1; // bb->miso;
bc.sclk_io_num = bb->clk;
bc.data0_io_num = bb->mosi;
bc.data1_io_num = -1;
bc.data2_io_num = -1;
bc.data3_io_num = -1;
bc.data4_io_num = -1;
bc.data5_io_num = -1;
bc.data6_io_num = -1;
bc.data7_io_num = -1;
bc.quadwp_io_num = -1;
bc.quadhd_io_num = -1;
bc.flags = SPICOMMON_BUSFLAG_MASTER;
if (spi_bus_initialize(bb->unit, &bc, SPI_DMA_CH_AUTO) != ESP_OK) {
lwsl_err("%s: SPI init failed\n", __func__);
return 1;
}
memset((void *)&sat, 0, sizeof(sat));
return 0;
}
int
lws_esp32_spi_queue(const lws_spi_ops_t *spi_ops, const lws_spi_desc_t *desc)
{
lws_bb_spi_t *bb = lws_container_of(spi_ops, lws_bb_spi_t, bb_ops);
spi_device_handle_t h = sdh[bb->unit][desc->channel];
uint8_t *d = (uint8_t *)desc->data;
size_t cw = desc->count_write;
// spi_transaction_t *ett;
esp_err_t e;
if (!h) {
spi_device_interface_config_t edic;
/* We need to create the device at these coordinates */
memset(&edic, 0, sizeof(edic));
edic.mode = spi_ops->bus_mode;
edic.clock_speed_hz = spi_ops->spi_clk_hz ?
spi_ops->spi_clk_hz : 16000000;
edic.input_delay_ns = 50;
edic.spics_io_num = bb->ncs[desc->channel];
edic.queue_size = 7;
edic.pre_cb = lcd_spi_pre_transfer_callback;
edic.post_cb = lcd_spi_post_transfer_callback;
edic.flags = SPI_DEVICE_NO_DUMMY;
/* we do these manually in callbacks */
bb->gpio->mode(bb->ncmd[desc->channel], LWSGGPIO_FL_WRITE);
bb->gpio->mode(bb->ncs[desc->channel], LWSGGPIO_FL_WRITE);
e = spi_bus_add_device(bb->unit, &edic, &h);
if (e != ESP_OK) {
lwsl_err("%s: failed to add device: 0x%x\n", __func__, e);
return 1;
}
sdh[bb->unit][desc->channel] = h;
}
if (desc->count_cmd) {
lws_spi_async_txn_t *at = NULL;
while (!at)
at = find_idle_sat();
if (at->dma_stash && at->dma_stash_len != 4) {
/* we lazily free these to avoid heap apis in IRQ ctx */
lws_esp32_spi_free_dma(NULL, (void **)&at->dma_stash);
at->dma_stash_len = 0;
}
if (at->dma_stash_len != 4) {
at->dma_stash = lws_esp32_spi_alloc_dma(NULL, 4);
if (!at->dma_stash) {
lwsl_err("%s: OOM getting DMA bounce\n", __func__);
return -1;
}
at->dma_stash_len = 4;
}
at->esp_txn.tx_buffer = at->dma_stash;
{
uint32_t u = 0;
size_t i;
for (i = 0; i < desc->count_cmd; i++) {
((uint8_t *)&u)[i & 3] = desc->src[i];
((uint32_t *)at->esp_txn.tx_buffer)[i >> 2] = u;
}
}
at->esp_txn.flags = 0;
at->esp_txn.length = desc->count_cmd * 8;
at->esp_txn.rx_buffer = NULL;
at->esp_txn.rxlength = 0;
at->esp_txn.user = (void *)((bb->ncs[desc->channel] << 16) |
(bb->ncmd[desc->channel] << 8) |
!!(desc->flags & LWS_SPI_FLAG_DC_CMD_IS_HIGH));
e = spi_device_queue_trans(h, &at->esp_txn, 50);
if (e != ESP_OK) {
lwsl_err("%s: failed to queue cmd trans: 0x%x\n",
__func__, e);
return 1;
}
#if 0
ett = &at->esp_txn;
e = spi_device_get_trans_result(h, &ett, 50);
if (e != ESP_OK) {
lwsl_err("%s: failed to get trans result\n", __func__);
return 1;
}
#endif
}
while (cw) {
size_t chunk = cw < 4000 ? cw : 4000;
lws_spi_async_txn_t *at = NULL;
while (!at)
at = find_idle_sat();
if (at->dma_stash && at->dma_stash_len != chunk) {
/* we lazily free these to avoid heap apis in IRQ ctx */
lws_esp32_spi_free_dma(NULL, (void **)&at->dma_stash);
at->dma_stash_len = 0;
}
if (at->dma_stash_len != chunk &&
!(desc->flags & LWS_SPI_FLAG_DMA_BOUNCE_NOT_NEEDED)) {
/* allocate a bounce buffer and fill it */
at->dma_stash = lws_esp32_spi_alloc_dma(NULL, chunk);
if (!at->dma_stash) {
lwsl_err("%s: OOM getting DMA bounce\n", __func__);
return -1;
}
at->dma_stash_len = chunk;
}
if (desc->flags & LWS_SPI_FLAG_DMA_BOUNCE_NOT_NEEDED) {
at->esp_txn.tx_buffer = d;
d += chunk;
} else {
uint32_t u = 0;
size_t i;
at->esp_txn.tx_buffer = at->dma_stash;
for (i = 0; i < chunk; i++) {
((uint8_t *)&u)[i & 3] = *d++;
((uint32_t *)at->esp_txn.tx_buffer)[i >> 2] = u;
}
}
at->esp_txn.rx_buffer = NULL;
at->esp_txn.rxlength = 0;
at->esp_txn.length = chunk * 8;
at->esp_txn.user = (void *)((bb->ncs[desc->channel] << 16) |
(bb->ncmd[desc->channel] << 8) |
!(desc->flags & LWS_SPI_FLAG_DC_CMD_IS_HIGH));
at->esp_txn.flags = 0;
e = spi_device_queue_trans(h, &at->esp_txn, 50);
if (e != ESP_OK) {
lwsl_err("%s: failed to queue data trans\n", __func__);
assert(0);
return 1;
}
#if 0
ett = &at->esp_txn;
e = spi_device_get_trans_result(h, &ett, 50);
if (e != ESP_OK) {
lwsl_err("%s: failed to get trans result\n", __func__);
return 1;
}
#endif
cw -= chunk;
}
return 0;
}