libwebsockets/plugins/ssh-base/crypto/ge25519.c
Andy Green c9731c5f17 type comparisons: fixes
This is a huge patch that should be a global NOP.

For unix type platforms it enables -Wconversion to issue warnings (-> error)
for all automatic casts that seem less than ideal but are normally concealed
by the toolchain.

This is things like passing an int to a size_t argument.  Once enabled, I
went through all args on my default build (which build most things) and
tried to make the removed default cast explicit.

With that approach it neither change nor bloat the code, since it compiles
to whatever it was doing before, just with the casts made explicit... in a
few cases I changed some length args from int to size_t but largely left
the causes alone.

From now on, new code that is relying on less than ideal casting
will complain and nudge me to improve it by warnings.
2021-01-05 10:56:38 +00:00

322 lines
11 KiB
C

/* $OpenBSD: ge25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
/*
* Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
* Peter Schwabe, Bo-Yin Yang.
* Copied from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c
*/
#include <libwebsockets.h>
#include "fe25519.h"
#include "sc25519.h"
#include "ge25519.h"
/*
* Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2
* with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
* Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
*/
/* d */
static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00,
0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
/* 2*d */
static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00,
0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
/* sqrt(-1) */
static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F,
0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
#define ge25519_p3 ge25519
typedef struct
{
fe25519 x;
fe25519 z;
fe25519 y;
fe25519 t;
} ge25519_p1p1;
typedef struct
{
fe25519 x;
fe25519 y;
fe25519 z;
} ge25519_p2;
typedef struct
{
fe25519 x;
fe25519 y;
} ge25519_aff;
/* Packed coordinates of the base point */
const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69,
0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
{{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
{{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
{{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20,
0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
/* Multiples of the base point in affine representation */
static const ge25519_aff ge25519_base_multiples_affine[425] = {
#include "ge25519_base.data"
};
static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
{
fe25519_mul(&r->x, &p->x, &p->t);
fe25519_mul(&r->y, &p->y, &p->z);
fe25519_mul(&r->z, &p->z, &p->t);
}
static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
{
p1p1_to_p2((ge25519_p2 *)r, p);
fe25519_mul(&r->t, &p->x, &p->y);
}
static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
{
fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
fe25519_mul(&qt, &q->x, &q->y);
fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
fe25519_sub(&t1, &q->y, &q->x);
fe25519_add(&t2, &q->y, &q->x);
fe25519_mul(&a, &a, &t1);
fe25519_mul(&b, &b, &t2);
fe25519_sub(&e, &b, &a); /* E = B-A */
fe25519_add(&h, &b, &a); /* H = B+A */
fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
fe25519_mul(&c, &c, &ge25519_ec2d);
fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
fe25519_sub(&f, &d, &c); /* F = D-C */
fe25519_add(&g, &d, &c); /* G = D+C */
fe25519_mul(&r->x, &e, &f);
fe25519_mul(&r->y, &h, &g);
fe25519_mul(&r->z, &g, &f);
fe25519_mul(&r->t, &e, &h);
}
static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
{
fe25519 a, b, c, d, t;
fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
fe25519_sub(&t, &q->y, &q->x);
fe25519_mul(&a, &a, &t);
fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
fe25519_add(&t, &q->x, &q->y);
fe25519_mul(&b, &b, &t);
fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
fe25519_mul(&c, &c, &ge25519_ec2d);
fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
fe25519_add(&d, &d, &d);
fe25519_sub(&r->x, &b, &a); /* E = B-A */
fe25519_sub(&r->t, &d, &c); /* F = D-C */
fe25519_add(&r->z, &d, &c); /* G = D+C */
fe25519_add(&r->y, &b, &a); /* H = B+A */
}
/* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
{
fe25519 a,b,c,d;
fe25519_square(&a, &p->x);
fe25519_square(&b, &p->y);
fe25519_square(&c, &p->z);
fe25519_add(&c, &c, &c);
fe25519_neg(&d, &a);
fe25519_add(&r->x, &p->x, &p->y);
fe25519_square(&r->x, &r->x);
fe25519_sub(&r->x, &r->x, &a);
fe25519_sub(&r->x, &r->x, &b);
fe25519_add(&r->z, &d, &b);
fe25519_sub(&r->t, &r->z, &c);
fe25519_sub(&r->y, &d, &b);
}
/* Constant-time version of: if(b) r = p */
static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
{
fe25519_cmov(&r->x, &p->x, b);
fe25519_cmov(&r->y, &p->y, b);
}
static unsigned char ge_equal(signed char b,signed char c)
{
unsigned char ub = (unsigned char)b;
unsigned char uc = (unsigned char)c;
unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
uint32_t y = x; /* 0: yes; 1..255: no */
y -= 1; /* 4294967295: yes; 0..254: no */
y >>= 31; /* 1: yes; 0: no */
return (unsigned char)y;
}
static unsigned char negative(signed char b)
{
unsigned long long x = (unsigned long long)b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
x >>= 63; /* 1: yes; 0: no */
return (unsigned char)x;
}
static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
{
/* constant time */
fe25519 v;
*t = ge25519_base_multiples_affine[5*pos+0];
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],ge_equal(b,1) | ge_equal(b,-1));
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],ge_equal(b,2) | ge_equal(b,-2));
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],ge_equal(b,3) | ge_equal(b,-3));
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],ge_equal(b,-4));
fe25519_neg(&v, &t->x);
fe25519_cmov(&t->x, &v, negative(b));
}
static void setneutral(ge25519 *r)
{
fe25519_setzero(&r->x);
fe25519_setone(&r->y);
fe25519_setone(&r->z);
fe25519_setzero(&r->t);
}
/* ********************************************************************
* EXPORTED FUNCTIONS
******************************************************************** */
/* return 0 on success, -1 otherwise */
int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
{
unsigned char par;
fe25519 t, chk, num, den, den2, den4, den6;
fe25519_setone(&r->z);
par = p[31] >> 7;
fe25519_unpack(&r->y, p);
fe25519_square(&num, &r->y); /* x = y^2 */
fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
/* Computation of sqrt(num/den) */
/* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
fe25519_square(&den2, &den);
fe25519_square(&den4, &den2);
fe25519_mul(&den6, &den4, &den2);
fe25519_mul(&t, &den6, &num);
fe25519_mul(&t, &t, &den);
fe25519_pow2523(&t, &t);
/* 2. computation of r->x = t * num * den^3 */
fe25519_mul(&t, &t, &num);
fe25519_mul(&t, &t, &den);
fe25519_mul(&t, &t, &den);
fe25519_mul(&r->x, &t, &den);
/* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
fe25519_square(&chk, &r->x);
fe25519_mul(&chk, &chk, &den);
if (!fe25519_iseq_vartime(&chk, &num))
fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
/* 4. Now we have one of the two square roots, except if input was not a square */
fe25519_square(&chk, &r->x);
fe25519_mul(&chk, &chk, &den);
if (!fe25519_iseq_vartime(&chk, &num))
return -1;
/* 5. Choose the desired square root according to parity: */
if(fe25519_getparity(&r->x) != (1-par))
fe25519_neg(&r->x, &r->x);
fe25519_mul(&r->t, &r->x, &r->y);
return 0;
}
void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
{
fe25519 tx, ty, zi;
fe25519_invert(&zi, &p->z);
fe25519_mul(&tx, &p->x, &zi);
fe25519_mul(&ty, &p->y, &zi);
fe25519_pack(r, &ty);
r[31] ^= (unsigned char)(fe25519_getparity(&tx) << 7);
}
int ge25519_isneutral_vartime(const ge25519_p3 *p)
{
int ret = 1;
if(!fe25519_iszero(&p->x)) ret = 0;
if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
return ret;
}
/* computes [s1]p1 + [s2]p2 */
void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
{
ge25519_p1p1 tp1p1;
ge25519_p3 pre[16];
unsigned char b[127];
int i;
/* precomputation s2 s1 */
setneutral(pre); /* 00 00 */
pre[1] = *p1; /* 00 01 */
dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
pre[4] = *p2; /* 01 00 */
add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
sc25519_2interleave2(b,s1,s2);
/* scalar multiplication */
*r = pre[b[126]];
for(i=125;i>=0;i--)
{
dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
if(b[i]!=0)
{
p1p1_to_p3(r, &tp1p1);
add_p1p1(&tp1p1, r, &pre[b[i]]);
}
if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
else p1p1_to_p3(r, &tp1p1);
}
}
void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
{
signed char b[85];
int i;
ge25519_aff t;
sc25519_window3(b,s);
choose_t((ge25519_aff *)r, 0, b[0]);
fe25519_setone(&r->z);
fe25519_mul(&r->t, &r->x, &r->y);
for(i=1;i<85;i++)
{
choose_t(&t, (unsigned long long) i, b[i]);
ge25519_mixadd2(r, &t);
}
}