mirror of
https://github.com/netdata/netdata.git
synced 2025-04-17 03:02:41 +00:00
Metric correlations (#12582)
* initial attempt at metric correlations * fix loop * simplify struct * change json * get points from query * comment * dont lock the host as much * add a configuration option to enable/disable metric correlations * remove KSfbar from header file * lock charts * add timeout * cast multiplication * add licencing info * better licencing * use onewayalloc * destroy owa
This commit is contained in:
parent
e652e6054e
commit
4078661e33
10 changed files with 1255 additions and 2 deletions
|
@ -676,6 +676,10 @@ set(RRD_PLUGIN_FILES
|
|||
database/engine/metadata_log/metalogpluginsd.h
|
||||
database/engine/metadata_log/compaction.c
|
||||
database/engine/metadata_log/compaction.h
|
||||
database/KolmogorovSmirnovDist.c
|
||||
database/KolmogorovSmirnovDist.h
|
||||
database/metric_correlations.c
|
||||
database/metric_correlations.h
|
||||
)
|
||||
|
||||
set(WEB_PLUGIN_FILES
|
||||
|
|
|
@ -460,6 +460,10 @@ RRD_PLUGIN_FILES = \
|
|||
database/sqlite/sqlite_aclk_alert.h \
|
||||
database/sqlite/sqlite3.c \
|
||||
database/sqlite/sqlite3.h \
|
||||
database/KolmogorovSmirnovDist.c \
|
||||
database/KolmogorovSmirnovDist.h \
|
||||
database/metric_correlations.c \
|
||||
database/metric_correlations.h \
|
||||
$(NULL)
|
||||
|
||||
if ENABLE_DBENGINE
|
||||
|
|
|
@ -180,4 +180,9 @@ connectivity is not available.
|
|||
|
||||
Copyright 2015, Benedikt Schmitt [Unlicense License](https://unlicense.org/)
|
||||
|
||||
- [Kolmogorov-Smirnov distribution](http://simul.iro.umontreal.ca/ksdir/)
|
||||
|
||||
Copyright March 2010 by Université de Montréal, Richard Simard and Pierre L'Ecuyer
|
||||
[GPL 3.0](https://www.gnu.org/licenses/gpl-3.0.en.html)
|
||||
|
||||
|
||||
|
|
|
@ -84,6 +84,9 @@
|
|||
#include "commands.h"
|
||||
#include "analytics.h"
|
||||
|
||||
// metric correlations
|
||||
#include "database/metric_correlations.h"
|
||||
|
||||
// global netdata daemon variables
|
||||
extern char *netdata_configured_hostname;
|
||||
extern char *netdata_configured_user_config_dir;
|
||||
|
|
|
@ -553,6 +553,10 @@ static void get_netdata_configured_variables() {
|
|||
enable_ksm = config_get_boolean(CONFIG_SECTION_GLOBAL, "memory deduplication (ksm)", enable_ksm);
|
||||
#endif
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// metric correlations
|
||||
enable_metric_correlations = config_get_boolean(CONFIG_SECTION_GLOBAL, "enable metric correlations", enable_metric_correlations);
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// get various system parameters
|
||||
|
||||
|
|
788
database/KolmogorovSmirnovDist.c
Normal file
788
database/KolmogorovSmirnovDist.c
Normal file
|
@ -0,0 +1,788 @@
|
|||
// SPDX-License-Identifier: GPL-3.0
|
||||
|
||||
/********************************************************************
|
||||
*
|
||||
* File: KolmogorovSmirnovDist.c
|
||||
* Environment: ISO C99 or ANSI C89
|
||||
* Author: Richard Simard
|
||||
* Organization: DIRO, Université de Montréal
|
||||
* Date: 1 February 2012
|
||||
* Version 1.1
|
||||
|
||||
* Copyright 1 march 2010 by Université de Montréal,
|
||||
Richard Simard and Pierre L'Ecuyer
|
||||
=====================================================================
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, version 3 of the License.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
=====================================================================*/
|
||||
|
||||
#include "KolmogorovSmirnovDist.h"
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define num_Pi 3.14159265358979323846 /* PI */
|
||||
#define num_Ln2 0.69314718055994530941 /* log(2) */
|
||||
|
||||
/* For x close to 0 or 1, we use the exact formulae of Ruben-Gambino in all
|
||||
cases. For n <= NEXACT, we use exact algorithms: the Durbin matrix and
|
||||
the Pomeranz algorithms. For n > NEXACT, we use asymptotic methods
|
||||
except for x close to 0 where we still use the method of Durbin
|
||||
for n <= NKOLMO. For n > NKOLMO, we use asymptotic methods only and
|
||||
so the precision is less for x close to 0.
|
||||
We could increase the limit NKOLMO to 10^6 to get better precision
|
||||
for x close to 0, but at the price of a slower speed. */
|
||||
#define NEXACT 500
|
||||
#define NKOLMO 100000
|
||||
|
||||
/* The Durbin matrix algorithm for the Kolmogorov-Smirnov distribution */
|
||||
static double DurbinMatrix (int n, double d);
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
#if 0
|
||||
|
||||
/* For ANSI C89 only, not for ISO C99 */
|
||||
#define MAXI 50
|
||||
#define EPSILON 1.0e-15
|
||||
|
||||
double log1p (double x)
|
||||
{
|
||||
/* returns a value equivalent to log(1 + x) accurate also for small x. */
|
||||
if (fabs (x) > 0.1) {
|
||||
return log (1.0 + x);
|
||||
} else {
|
||||
double term = x;
|
||||
double sum = x;
|
||||
int s = 2;
|
||||
while ((fabs (term) > EPSILON * fabs (sum)) && (s < MAXI)) {
|
||||
term *= -x;
|
||||
sum += term / s;
|
||||
s++;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MAXI
|
||||
#undef EPSILON
|
||||
|
||||
#endif
|
||||
|
||||
/*========================================================================*/
|
||||
#define MFACT 30
|
||||
|
||||
/* The natural logarithm of factorial n! for 0 <= n <= MFACT */
|
||||
static double LnFactorial[MFACT + 1] = {
|
||||
0.,
|
||||
0.,
|
||||
0.6931471805599453,
|
||||
1.791759469228055,
|
||||
3.178053830347946,
|
||||
4.787491742782046,
|
||||
6.579251212010101,
|
||||
8.525161361065415,
|
||||
10.60460290274525,
|
||||
12.80182748008147,
|
||||
15.10441257307552,
|
||||
17.50230784587389,
|
||||
19.98721449566188,
|
||||
22.55216385312342,
|
||||
25.19122118273868,
|
||||
27.89927138384088,
|
||||
30.67186010608066,
|
||||
33.50507345013688,
|
||||
36.39544520803305,
|
||||
39.33988418719949,
|
||||
42.33561646075348,
|
||||
45.3801388984769,
|
||||
48.47118135183522,
|
||||
51.60667556776437,
|
||||
54.7847293981123,
|
||||
58.00360522298051,
|
||||
61.26170176100199,
|
||||
64.55753862700632,
|
||||
67.88974313718154,
|
||||
71.257038967168,
|
||||
74.65823634883016
|
||||
};
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
|
||||
static double getLogFactorial (int n)
|
||||
{
|
||||
/* Returns the natural logarithm of factorial n! */
|
||||
if (n <= MFACT) {
|
||||
return LnFactorial[n];
|
||||
|
||||
} else {
|
||||
double x = (double) (n + 1);
|
||||
double y = 1.0 / (x * x);
|
||||
double z = ((-(5.95238095238E-4 * y) + 7.936500793651E-4) * y -
|
||||
2.7777777777778E-3) * y + 8.3333333333333E-2;
|
||||
z = ((x - 0.5) * log (x) - x) + 9.1893853320467E-1 + z / x;
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
|
||||
static double rapfac (int n)
|
||||
{
|
||||
/* Computes n! / n^n */
|
||||
int i;
|
||||
double res = 1.0 / n;
|
||||
for (i = 2; i <= n; i++) {
|
||||
res *= (double) i / n;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
static double **CreateMatrixD (int N, int M)
|
||||
{
|
||||
int i;
|
||||
double **T2;
|
||||
|
||||
T2 = (double **) malloc (N * sizeof (double *));
|
||||
T2[0] = (double *) malloc ((size_t) N * M * sizeof (double));
|
||||
for (i = 1; i < N; i++)
|
||||
T2[i] = T2[0] + i * M;
|
||||
return T2;
|
||||
}
|
||||
|
||||
|
||||
static void DeleteMatrixD (double **T)
|
||||
{
|
||||
free (T[0]);
|
||||
free (T);
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
static double KSPlusbarAsymp (int n, double x)
|
||||
{
|
||||
/* Compute the probability of the KS+ distribution using an asymptotic
|
||||
formula */
|
||||
double t = (6.0 * n * x + 1);
|
||||
double z = t * t / (18.0 * n);
|
||||
double v = 1.0 - (2.0 * z * z - 4.0 * z - 1.0) / (18.0 * n);
|
||||
if (v <= 0.0)
|
||||
return 0.0;
|
||||
v = v * exp (-z);
|
||||
if (v >= 1.0)
|
||||
return 1.0;
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
/*-------------------------------------------------------------------------*/
|
||||
|
||||
static double KSPlusbarUpper (int n, double x)
|
||||
{
|
||||
/* Compute the probability of the KS+ distribution in the upper tail using
|
||||
Smirnov's stable formula */
|
||||
const double EPSILON = 1.0E-12;
|
||||
double q;
|
||||
double Sum = 0.0;
|
||||
double term;
|
||||
double t;
|
||||
double LogCom;
|
||||
double LOGJMAX;
|
||||
int j;
|
||||
int jdiv;
|
||||
int jmax = (int) (n * (1.0 - x));
|
||||
|
||||
if (n > 200000)
|
||||
return KSPlusbarAsymp (n, x);
|
||||
|
||||
/* Avoid log(0) for j = jmax and q ~ 1.0 */
|
||||
if ((1.0 - x - (double) jmax / n) <= 0.0)
|
||||
jmax--;
|
||||
|
||||
if (n > 3000)
|
||||
jdiv = 2;
|
||||
else
|
||||
jdiv = 3;
|
||||
|
||||
j = jmax / jdiv + 1;
|
||||
LogCom = getLogFactorial (n) - getLogFactorial (j) -
|
||||
getLogFactorial (n - j);
|
||||
LOGJMAX = LogCom;
|
||||
|
||||
while (j <= jmax) {
|
||||
q = (double) j / n + x;
|
||||
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
|
||||
t = exp (term);
|
||||
Sum += t;
|
||||
LogCom += log ((double) (n - j) / (j + 1));
|
||||
if (t <= Sum * EPSILON)
|
||||
break;
|
||||
j++;
|
||||
}
|
||||
|
||||
j = jmax / jdiv;
|
||||
LogCom = LOGJMAX + log ((double) (j + 1) / (n - j));
|
||||
|
||||
while (j > 0) {
|
||||
q = (double) j / n + x;
|
||||
term = LogCom + (j - 1) * log (q) + (n - j) * log1p (-q);
|
||||
t = exp (term);
|
||||
Sum += t;
|
||||
LogCom += log ((double) j / (n - j + 1));
|
||||
if (t <= Sum * EPSILON)
|
||||
break;
|
||||
j--;
|
||||
}
|
||||
|
||||
Sum *= x;
|
||||
/* add the term j = 0 */
|
||||
Sum += exp (n * log1p (-x));
|
||||
return Sum;
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
static double Pelz (int n, double x)
|
||||
{
|
||||
/* Approximating the Lower Tail-Areas of the Kolmogorov-Smirnov One-Sample
|
||||
Statistic,
|
||||
Wolfgang Pelz and I. J. Good,
|
||||
Journal of the Royal Statistical Society, Series B.
|
||||
Vol. 38, No. 2 (1976), pp. 152-156
|
||||
*/
|
||||
|
||||
const int JMAX = 20;
|
||||
const double EPS = 1.0e-10;
|
||||
const double C = 2.506628274631001; /* sqrt(2*Pi) */
|
||||
const double C2 = 1.2533141373155001; /* sqrt(Pi/2) */
|
||||
const double PI2 = num_Pi * num_Pi;
|
||||
const double PI4 = PI2 * PI2;
|
||||
const double RACN = sqrt ((double) n);
|
||||
const double z = RACN * x;
|
||||
const double z2 = z * z;
|
||||
const double z4 = z2 * z2;
|
||||
const double z6 = z4 * z2;
|
||||
const double w = PI2 / (2.0 * z * z);
|
||||
double ti, term, tom;
|
||||
double sum;
|
||||
int j;
|
||||
|
||||
term = 1;
|
||||
j = 0;
|
||||
sum = 0;
|
||||
while (j <= JMAX && term > EPS * sum) {
|
||||
ti = j + 0.5;
|
||||
term = exp (-ti * ti * w);
|
||||
sum += term;
|
||||
j++;
|
||||
}
|
||||
sum *= C / z;
|
||||
|
||||
term = 1;
|
||||
tom = 0;
|
||||
j = 0;
|
||||
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
|
||||
ti = j + 0.5;
|
||||
term = (PI2 * ti * ti - z2) * exp (-ti * ti * w);
|
||||
tom += term;
|
||||
j++;
|
||||
}
|
||||
sum += tom * C2 / (RACN * 3.0 * z4);
|
||||
|
||||
term = 1;
|
||||
tom = 0;
|
||||
j = 0;
|
||||
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
|
||||
ti = j + 0.5;
|
||||
term = 6 * z6 + 2 * z4 + PI2 * (2 * z4 - 5 * z2) * ti * ti +
|
||||
PI4 * (1 - 2 * z2) * ti * ti * ti * ti;
|
||||
term *= exp (-ti * ti * w);
|
||||
tom += term;
|
||||
j++;
|
||||
}
|
||||
sum += tom * C2 / (n * 36.0 * z * z6);
|
||||
|
||||
term = 1;
|
||||
tom = 0;
|
||||
j = 1;
|
||||
while (j <= JMAX && term > EPS * tom) {
|
||||
ti = j;
|
||||
term = PI2 * ti * ti * exp (-ti * ti * w);
|
||||
tom += term;
|
||||
j++;
|
||||
}
|
||||
sum -= tom * C2 / (n * 18.0 * z * z2);
|
||||
|
||||
term = 1;
|
||||
tom = 0;
|
||||
j = 0;
|
||||
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
|
||||
ti = j + 0.5;
|
||||
ti = ti * ti;
|
||||
term = -30 * z6 - 90 * z6 * z2 + PI2 * (135 * z4 - 96 * z6) * ti +
|
||||
PI4 * (212 * z4 - 60 * z2) * ti * ti + PI2 * PI4 * ti * ti * ti * (5 -
|
||||
30 * z2);
|
||||
term *= exp (-ti * w);
|
||||
tom += term;
|
||||
j++;
|
||||
}
|
||||
sum += tom * C2 / (RACN * n * 3240.0 * z4 * z6);
|
||||
|
||||
term = 1;
|
||||
tom = 0;
|
||||
j = 1;
|
||||
while (j <= JMAX && fabs (term) > EPS * fabs (tom)) {
|
||||
ti = j * j;
|
||||
term = (3 * PI2 * ti * z2 - PI4 * ti * ti) * exp (-ti * w);
|
||||
tom += term;
|
||||
j++;
|
||||
}
|
||||
sum += tom * C2 / (RACN * n * 108.0 * z6);
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
/*=========================================================================*/
|
||||
|
||||
static void CalcFloorCeil (
|
||||
int n, /* sample size */
|
||||
double t, /* = nx */
|
||||
double *A, /* A_i */
|
||||
double *Atflo, /* floor (A_i - t) */
|
||||
double *Atcei /* ceiling (A_i + t) */
|
||||
)
|
||||
{
|
||||
/* Precompute A_i, floors, and ceilings for limits of sums in the Pomeranz
|
||||
algorithm */
|
||||
int i;
|
||||
int ell = (int) t; /* floor (t) */
|
||||
double z = t - ell; /* t - floor (t) */
|
||||
double w = ceil (t) - t;
|
||||
|
||||
if (z > 0.5) {
|
||||
for (i = 2; i <= 2 * n + 2; i += 2)
|
||||
Atflo[i] = i / 2 - 2 - ell;
|
||||
for (i = 1; i <= 2 * n + 2; i += 2)
|
||||
Atflo[i] = i / 2 - 1 - ell;
|
||||
|
||||
for (i = 2; i <= 2 * n + 2; i += 2)
|
||||
Atcei[i] = i / 2 + ell;
|
||||
for (i = 1; i <= 2 * n + 2; i += 2)
|
||||
Atcei[i] = i / 2 + 1 + ell;
|
||||
|
||||
} else if (z > 0.0) {
|
||||
for (i = 1; i <= 2 * n + 2; i++)
|
||||
Atflo[i] = i / 2 - 1 - ell;
|
||||
|
||||
for (i = 2; i <= 2 * n + 2; i++)
|
||||
Atcei[i] = i / 2 + ell;
|
||||
Atcei[1] = 1 + ell;
|
||||
|
||||
} else { /* z == 0 */
|
||||
for (i = 2; i <= 2 * n + 2; i += 2)
|
||||
Atflo[i] = i / 2 - 1 - ell;
|
||||
for (i = 1; i <= 2 * n + 2; i += 2)
|
||||
Atflo[i] = i / 2 - ell;
|
||||
|
||||
for (i = 2; i <= 2 * n + 2; i += 2)
|
||||
Atcei[i] = i / 2 - 1 + ell;
|
||||
for (i = 1; i <= 2 * n + 2; i += 2)
|
||||
Atcei[i] = i / 2 + ell;
|
||||
}
|
||||
|
||||
if (w < z)
|
||||
z = w;
|
||||
A[0] = A[1] = 0;
|
||||
A[2] = z;
|
||||
A[3] = 1 - A[2];
|
||||
for (i = 4; i <= 2 * n + 1; i++)
|
||||
A[i] = A[i - 2] + 1;
|
||||
A[2 * n + 2] = n;
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
static double Pomeranz (int n, double x)
|
||||
{
|
||||
/* The Pomeranz algorithm to compute the KS distribution */
|
||||
const double EPS = 1.0e-15;
|
||||
const int ENO = 350;
|
||||
const double RENO = ldexp (1.0, ENO); /* for renormalization of V */
|
||||
int coreno; /* counter: how many renormalizations */
|
||||
const double t = n * x;
|
||||
double w, sum, minsum;
|
||||
int i, j, k, s;
|
||||
int r1, r2; /* Indices i and i-1 for V[i][] */
|
||||
int jlow, jup, klow, kup, kup0;
|
||||
double *A;
|
||||
double *Atflo;
|
||||
double *Atcei;
|
||||
double **V;
|
||||
double **H; /* = pow(w, j) / Factorial(j) */
|
||||
|
||||
A = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
|
||||
Atflo = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
|
||||
Atcei = (double *) calloc ((size_t) (2 * n + 3), sizeof (double));
|
||||
V = (double **) CreateMatrixD (2, n + 2);
|
||||
H = (double **) CreateMatrixD (4, n + 2);
|
||||
|
||||
CalcFloorCeil (n, t, A, Atflo, Atcei);
|
||||
|
||||
for (j = 1; j <= n + 1; j++)
|
||||
V[0][j] = 0;
|
||||
for (j = 2; j <= n + 1; j++)
|
||||
V[1][j] = 0;
|
||||
V[1][1] = RENO;
|
||||
coreno = 1;
|
||||
|
||||
/* Precompute H[][] = (A[j] - A[j-1]^k / k! for speed */
|
||||
H[0][0] = 1;
|
||||
w = 2.0 * A[2] / n;
|
||||
for (j = 1; j <= n + 1; j++)
|
||||
H[0][j] = w * H[0][j - 1] / j;
|
||||
|
||||
H[1][0] = 1;
|
||||
w = (1.0 - 2.0 * A[2]) / n;
|
||||
for (j = 1; j <= n + 1; j++)
|
||||
H[1][j] = w * H[1][j - 1] / j;
|
||||
|
||||
H[2][0] = 1;
|
||||
w = A[2] / n;
|
||||
for (j = 1; j <= n + 1; j++)
|
||||
H[2][j] = w * H[2][j - 1] / j;
|
||||
|
||||
H[3][0] = 1;
|
||||
for (j = 1; j <= n + 1; j++)
|
||||
H[3][j] = 0;
|
||||
|
||||
r1 = 0;
|
||||
r2 = 1;
|
||||
for (i = 2; i <= 2 * n + 2; i++) {
|
||||
jlow = 2 + (int) Atflo[i];
|
||||
if (jlow < 1)
|
||||
jlow = 1;
|
||||
jup = (int) Atcei[i];
|
||||
if (jup > n + 1)
|
||||
jup = n + 1;
|
||||
|
||||
klow = 2 + (int) Atflo[i - 1];
|
||||
if (klow < 1)
|
||||
klow = 1;
|
||||
kup0 = (int) Atcei[i - 1];
|
||||
|
||||
/* Find to which case it corresponds */
|
||||
w = (A[i] - A[i - 1]) / n;
|
||||
s = -1;
|
||||
for (j = 0; j < 4; j++) {
|
||||
if (fabs (w - H[j][1]) <= EPS) {
|
||||
s = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
/* assert (s >= 0, "Pomeranz: s < 0"); */
|
||||
|
||||
minsum = RENO;
|
||||
r1 = (r1 + 1) & 1; /* i - 1 */
|
||||
r2 = (r2 + 1) & 1; /* i */
|
||||
|
||||
for (j = jlow; j <= jup; j++) {
|
||||
kup = kup0;
|
||||
if (kup > j)
|
||||
kup = j;
|
||||
sum = 0;
|
||||
for (k = kup; k >= klow; k--)
|
||||
sum += V[r1][k] * H[s][j - k];
|
||||
V[r2][j] = sum;
|
||||
if (sum < minsum)
|
||||
minsum = sum;
|
||||
}
|
||||
|
||||
if (minsum < 1.0e-280) {
|
||||
/* V is too small: renormalize to avoid underflow of probabilities */
|
||||
for (j = jlow; j <= jup; j++)
|
||||
V[r2][j] *= RENO;
|
||||
coreno++; /* keep track of log of RENO */
|
||||
}
|
||||
}
|
||||
|
||||
sum = V[r2][n + 1];
|
||||
free (A);
|
||||
free (Atflo);
|
||||
free (Atcei);
|
||||
DeleteMatrixD (H);
|
||||
DeleteMatrixD (V);
|
||||
w = getLogFactorial (n) - coreno * ENO * num_Ln2 + log (sum);
|
||||
if (w >= 0.)
|
||||
return 1.;
|
||||
return exp (w);
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
static double cdfSpecial (int n, double x)
|
||||
{
|
||||
/* The KS distribution is known exactly for these cases */
|
||||
|
||||
/* For nx^2 > 18, KSfbar(n, x) is smaller than 5e-16 */
|
||||
if ((n * x * x >= 18.0) || (x >= 1.0))
|
||||
return 1.0;
|
||||
|
||||
if (x <= 0.5 / n)
|
||||
return 0.0;
|
||||
|
||||
if (n == 1)
|
||||
return 2.0 * x - 1.0;
|
||||
|
||||
if (x <= 1.0 / n) {
|
||||
double t = 2.0 * x * n - 1.0;
|
||||
double w;
|
||||
if (n <= NEXACT) {
|
||||
w = rapfac (n);
|
||||
return w * pow (t, (double) n);
|
||||
}
|
||||
w = getLogFactorial (n) + n * log (t / n);
|
||||
return exp (w);
|
||||
}
|
||||
|
||||
if (x >= 1.0 - 1.0 / n) {
|
||||
return 1.0 - 2.0 * pow (1.0 - x, (double) n);
|
||||
}
|
||||
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
double KScdf (int n, double x)
|
||||
{
|
||||
const double w = n * x * x;
|
||||
double u = cdfSpecial (n, x);
|
||||
if (u >= 0.0)
|
||||
return u;
|
||||
|
||||
if (n <= NEXACT) {
|
||||
if (w < 0.754693)
|
||||
return DurbinMatrix (n, x);
|
||||
if (w < 4.0)
|
||||
return Pomeranz (n, x);
|
||||
return 1.0 - KSfbar (n, x);
|
||||
}
|
||||
|
||||
if ((w * x * n <= 7.0) && (n <= NKOLMO))
|
||||
return DurbinMatrix (n, x);
|
||||
|
||||
return Pelz (n, x);
|
||||
}
|
||||
|
||||
|
||||
/*=========================================================================*/
|
||||
|
||||
static double fbarSpecial (int n, double x)
|
||||
{
|
||||
const double w = n * x * x;
|
||||
|
||||
if ((w >= 370.0) || (x >= 1.0))
|
||||
return 0.0;
|
||||
if ((w <= 0.0274) || (x <= 0.5 / n))
|
||||
return 1.0;
|
||||
if (n == 1)
|
||||
return 2.0 - 2.0 * x;
|
||||
|
||||
if (x <= 1.0 / n) {
|
||||
double z;
|
||||
double t = 2.0 * x * n - 1.0;
|
||||
if (n <= NEXACT) {
|
||||
z = rapfac (n);
|
||||
return 1.0 - z * pow (t, (double) n);
|
||||
}
|
||||
z = getLogFactorial (n) + n * log (t / n);
|
||||
return 1.0 - exp (z);
|
||||
}
|
||||
|
||||
if (x >= 1.0 - 1.0 / n) {
|
||||
return 2.0 * pow (1.0 - x, (double) n);
|
||||
}
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
|
||||
/*========================================================================*/
|
||||
|
||||
double KSfbar (int n, double x)
|
||||
{
|
||||
const double w = n * x * x;
|
||||
double v = fbarSpecial (n, x);
|
||||
if (v >= 0.0)
|
||||
return v;
|
||||
|
||||
if (n <= NEXACT) {
|
||||
if (w < 4.0)
|
||||
return 1.0 - KScdf (n, x);
|
||||
else
|
||||
return 2.0 * KSPlusbarUpper (n, x);
|
||||
}
|
||||
|
||||
if (w >= 2.65)
|
||||
return 2.0 * KSPlusbarUpper (n, x);
|
||||
|
||||
return 1.0 - KScdf (n, x);
|
||||
}
|
||||
|
||||
|
||||
/*=========================================================================
|
||||
|
||||
The following implements the Durbin matrix algorithm and was programmed by
|
||||
G. Marsaglia, Wai Wan Tsang and Jingbo Wong.
|
||||
|
||||
I have made small modifications in their program. (Richard Simard)
|
||||
|
||||
|
||||
|
||||
=========================================================================*/
|
||||
|
||||
/*
|
||||
The C program to compute Kolmogorov's distribution
|
||||
|
||||
K(n,d) = Prob(D_n < d), where
|
||||
|
||||
D_n = max(x_1-0/n,x_2-1/n...,x_n-(n-1)/n,1/n-x_1,2/n-x_2,...,n/n-x_n)
|
||||
|
||||
with x_1<x_2,...<x_n a purported set of n independent uniform [0,1)
|
||||
random variables sorted into increasing order.
|
||||
See G. Marsaglia, Wai Wan Tsang and Jingbo Wong,
|
||||
J.Stat.Software, 8, 18, pp 1--4, (2003).
|
||||
*/
|
||||
|
||||
#define NORM 1.0e140
|
||||
#define INORM 1.0e-140
|
||||
#define LOGNORM 140
|
||||
|
||||
|
||||
/* Matrix product */
|
||||
static void mMultiply (double *A, double *B, double *C, int m);
|
||||
|
||||
/* Matrix power */
|
||||
static void mPower (double *A, int eA, double *V, int *eV, int m, int n);
|
||||
|
||||
|
||||
static double DurbinMatrix (int n, double d)
|
||||
{
|
||||
int k, m, i, j, g, eH, eQ;
|
||||
double h, s, *H, *Q;
|
||||
/* OMIT NEXT TWO LINES IF YOU REQUIRE >7 DIGIT ACCURACY IN THE RIGHT TAIL */
|
||||
#if 0
|
||||
s = d * d * n;
|
||||
if (s > 7.24 || (s > 3.76 && n > 99))
|
||||
return 1 - 2 * exp (-(2.000071 + .331 / sqrt (n) + 1.409 / n) * s);
|
||||
#endif
|
||||
k = (int) (n * d) + 1;
|
||||
m = 2 * k - 1;
|
||||
h = k - n * d;
|
||||
H = (double *) malloc ((m * m) * sizeof (double));
|
||||
Q = (double *) malloc ((m * m) * sizeof (double));
|
||||
for (i = 0; i < m; i++)
|
||||
for (j = 0; j < m; j++)
|
||||
if (i - j + 1 < 0)
|
||||
H[i * m + j] = 0;
|
||||
else
|
||||
H[i * m + j] = 1;
|
||||
for (i = 0; i < m; i++) {
|
||||
H[i * m] -= pow (h, (double) (i + 1));
|
||||
H[(m - 1) * m + i] -= pow (h, (double) (m - i));
|
||||
}
|
||||
H[(m - 1) * m] += (2 * h - 1 > 0 ? pow (2 * h - 1, (double) m) : 0);
|
||||
for (i = 0; i < m; i++)
|
||||
for (j = 0; j < m; j++)
|
||||
if (i - j + 1 > 0)
|
||||
for (g = 1; g <= i - j + 1; g++)
|
||||
H[i * m + j] /= g;
|
||||
eH = 0;
|
||||
mPower (H, eH, Q, &eQ, m, n);
|
||||
s = Q[(k - 1) * m + k - 1];
|
||||
|
||||
for (i = 1; i <= n; i++) {
|
||||
s = s * (double) i / n;
|
||||
if (s < INORM) {
|
||||
s *= NORM;
|
||||
eQ -= LOGNORM;
|
||||
}
|
||||
}
|
||||
s *= pow (10., (double) eQ);
|
||||
free (H);
|
||||
free (Q);
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
static void mMultiply (double *A, double *B, double *C, int m)
|
||||
{
|
||||
int i, j, k;
|
||||
double s;
|
||||
for (i = 0; i < m; i++)
|
||||
for (j = 0; j < m; j++) {
|
||||
s = 0.;
|
||||
for (k = 0; k < m; k++)
|
||||
s += A[i * m + k] * B[k * m + j];
|
||||
C[i * m + j] = s;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void renormalize (double *V, int m, int *p)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < m * m; i++)
|
||||
V[i] *= INORM;
|
||||
*p += LOGNORM;
|
||||
}
|
||||
|
||||
|
||||
static void mPower (double *A, int eA, double *V, int *eV, int m, int n)
|
||||
{
|
||||
double *B;
|
||||
int eB, i;
|
||||
if (n == 1) {
|
||||
for (i = 0; i < m * m; i++)
|
||||
V[i] = A[i];
|
||||
*eV = eA;
|
||||
return;
|
||||
}
|
||||
mPower (A, eA, V, eV, m, n / 2);
|
||||
B = (double *) malloc ((m * m) * sizeof (double));
|
||||
mMultiply (V, V, B, m);
|
||||
eB = 2 * (*eV);
|
||||
if (B[(m / 2) * m + (m / 2)] > NORM)
|
||||
renormalize (B, m, &eB);
|
||||
|
||||
if (n % 2 == 0) {
|
||||
for (i = 0; i < m * m; i++)
|
||||
V[i] = B[i];
|
||||
*eV = eB;
|
||||
} else {
|
||||
mMultiply (A, B, V, m);
|
||||
*eV = eA + eB;
|
||||
}
|
||||
|
||||
if (V[(m / 2) * m + (m / 2)] > NORM)
|
||||
renormalize (V, m, eV);
|
||||
free (B);
|
||||
}
|
91
database/KolmogorovSmirnovDist.h
Normal file
91
database/KolmogorovSmirnovDist.h
Normal file
|
@ -0,0 +1,91 @@
|
|||
// SPDX-License-Identifier: GPL-3.0
|
||||
|
||||
#ifndef KOLMOGOROVSMIRNOVDIST_H
|
||||
#define KOLMOGOROVSMIRNOVDIST_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/********************************************************************
|
||||
*
|
||||
* File: KolmogorovSmirnovDist.h
|
||||
* Environment: ISO C99 or ANSI C89
|
||||
* Author: Richard Simard
|
||||
* Organization: DIRO, Université de Montréal
|
||||
* Date: 1 February 2012
|
||||
* Version 1.1
|
||||
*
|
||||
* Copyright March 2010 by Université de Montréal,
|
||||
Richard Simard and Pierre L'Ecuyer
|
||||
=====================================================================
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, version 3 of the License.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
=====================================================================*/
|
||||
/*
|
||||
*
|
||||
* The Kolmogorov-Smirnov test statistic D_n is defined by
|
||||
*
|
||||
* D_n = sup_x |F(x) - S_n(x)|
|
||||
*
|
||||
* where n is the sample size, F(x) is a completely specified theoretical
|
||||
* distribution, and S_n(x) is an empirical distribution function.
|
||||
*
|
||||
*
|
||||
* The function
|
||||
*
|
||||
* double KScdf (int n, double x);
|
||||
*
|
||||
* computes the cumulative probability P[D_n <= x] of the 2-sided 1-sample
|
||||
* Kolmogorov-Smirnov distribution with sample size n at x.
|
||||
* It returns at least 13 decimal digits of precision for n <= 500,
|
||||
* at least 7 decimal digits of precision for 500 < n <= 100000,
|
||||
* and a few correct decimal digits for n > 100000.
|
||||
*
|
||||
*/
|
||||
|
||||
double KScdf (int n, double x);
|
||||
|
||||
|
||||
/*
|
||||
* The function
|
||||
*
|
||||
* double KSfbar (int n, double x);
|
||||
*
|
||||
* computes the complementary cumulative probability P[D_n >= x] of the
|
||||
* 2-sided 1-sample Kolmogorov-Smirnov distribution with sample size n at x.
|
||||
* It returns at least 10 decimal digits of precision for n <= 500,
|
||||
* at least 6 decimal digits of precision for 500 < n <= 200000,
|
||||
* and a few correct decimal digits for n > 200000.
|
||||
*
|
||||
*/
|
||||
|
||||
double KSfbar (int n, double x);
|
||||
|
||||
|
||||
/*
|
||||
* NOTE:
|
||||
* The ISO C99 function log1p of the standard math library does not exist in
|
||||
* ANSI C89. Here, it is programmed explicitly in KolmogorovSmirnovDist.c.
|
||||
|
||||
* For ANSI C89 compilers, change the preprocessor condition to make it
|
||||
* available.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
299
database/metric_correlations.c
Normal file
299
database/metric_correlations.c
Normal file
|
@ -0,0 +1,299 @@
|
|||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
#include "daemon/common.h"
|
||||
#include "KolmogorovSmirnovDist.h"
|
||||
|
||||
#define MAX_POINTS 10000
|
||||
int enable_metric_correlations = CONFIG_BOOLEAN_YES;
|
||||
|
||||
struct charts {
|
||||
RRDSET *st;
|
||||
struct charts *next;
|
||||
};
|
||||
|
||||
struct per_dim {
|
||||
char *dimension;
|
||||
calculated_number baseline[MAX_POINTS];
|
||||
calculated_number highlight[MAX_POINTS];
|
||||
|
||||
double baseline_diffs[MAX_POINTS];
|
||||
double highlight_diffs[MAX_POINTS];
|
||||
};
|
||||
|
||||
int find_index(double arr[], long int n, double K, long int start)
|
||||
{
|
||||
for (long int i = start; i < n; i++) {
|
||||
if (K<arr[i]){
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
int compare(const void *left, const void *right) {
|
||||
double lt = *(double *)left;
|
||||
double rt = *(double *)right;
|
||||
|
||||
if(unlikely(lt < rt)) return -1;
|
||||
if(unlikely(lt > rt)) return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void kstwo(double data1[], long int n1, double data2[], long int n2, double *d, double *prob)
|
||||
{
|
||||
double en1, en2, en, data_all[MAX_POINTS*2], cdf1[MAX_POINTS], cdf2[MAX_POINTS], cddiffs[MAX_POINTS];
|
||||
double min = 0.0, max = 0.0;
|
||||
qsort(data1, n1, sizeof(double), compare);
|
||||
qsort(data2, n2, sizeof(double), compare);
|
||||
|
||||
for (int i = 0; i < n1; i++)
|
||||
data_all[i] = data1[i];
|
||||
for (int i = 0; i < n2; i++)
|
||||
data_all[n1 + i] = data2[i];
|
||||
|
||||
en1 = (double)n1;
|
||||
en2 = (double)n2;
|
||||
*d = 0.0;
|
||||
cddiffs[0]=0; //for uninitialized warning
|
||||
|
||||
for (int i=0; i<n1+n2;i++)
|
||||
cdf1[i] = find_index(data1, n1, data_all[i], 0) / en1; //TODO, use the start to reduce loops
|
||||
|
||||
for (int i=0; i<n1+n2;i++)
|
||||
cdf2[i] = find_index(data2, n2, data_all[i], 0) / en2;
|
||||
|
||||
for ( int i=0;i<n2+n1;i++)
|
||||
cddiffs[i] = cdf1[i] - cdf2[i];
|
||||
|
||||
min = cddiffs[0];
|
||||
for ( int i=0;i<n2+n1;i++) {
|
||||
if (cddiffs[i] < min)
|
||||
min = cddiffs[i];
|
||||
}
|
||||
|
||||
//clip min
|
||||
if (fabs(min) < 0) min = 0;
|
||||
else if (fabs(min) > 1) min = 1;
|
||||
|
||||
max = fabs(cddiffs[0]);
|
||||
for ( int i=0;i<n2+n1;i++)
|
||||
if (cddiffs[i] >= max) max = cddiffs[i];
|
||||
|
||||
if (fabs(min) < max)
|
||||
*d = max;
|
||||
else
|
||||
*d = fabs(min);
|
||||
|
||||
|
||||
|
||||
en = (en1*en2 / (en1 + en2));
|
||||
*prob = KSfbar(round(en), *d);
|
||||
}
|
||||
|
||||
void fill_nan (struct per_dim *d, long int hp, long int bp)
|
||||
{
|
||||
int k;
|
||||
|
||||
for (k = 0; k < bp; k++) {
|
||||
if (isnan(d->baseline[k])) {
|
||||
d->baseline[k] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
for (k = 0; k < hp; k++) {
|
||||
if (isnan(d->highlight[k])) {
|
||||
d->highlight[k] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//TODO check counters
|
||||
void run_diffs_and_rev (struct per_dim *d, long int hp, long int bp)
|
||||
{
|
||||
int k, j;
|
||||
|
||||
for (k = 0, j = bp; k < bp - 1; k++, j--)
|
||||
d->baseline_diffs[k] = (double)d->baseline[j - 2] - (double)d->baseline[j - 1];
|
||||
for (k = 0, j = hp; k < hp - 1; k++, j--) {
|
||||
d->highlight_diffs[k] = (double)d->highlight[j - 2] - (double)d->highlight[j - 1];
|
||||
}
|
||||
}
|
||||
|
||||
int run_metric_correlations (BUFFER *wb, RRDSET *st, long long baseline_after, long long baseline_before, long long highlight_after, long long highlight_before, long long max_points)
|
||||
{
|
||||
uint32_t options = 0x00000000;
|
||||
int group_method = RRDR_GROUPING_AVERAGE;
|
||||
long group_time = 0;
|
||||
struct context_param *context_param_list = NULL;
|
||||
long c;
|
||||
int i=0, j=0;
|
||||
int b_dims = 0;
|
||||
long int baseline_points = 0, highlight_points = 0;
|
||||
|
||||
struct per_dim *pd = NULL;
|
||||
|
||||
//TODO get everything in one go, when baseline is right before highlight
|
||||
//get baseline
|
||||
ONEWAYALLOC *owa = onewayalloc_create(0);
|
||||
RRDR *rb = rrd2rrdr(owa, st, max_points, baseline_after, baseline_before, group_method, group_time, options, NULL, context_param_list, 0);
|
||||
if(!rb) {
|
||||
info("Cannot generate metric correlations output with these parameters on this chart.");
|
||||
onewayalloc_destroy(owa);
|
||||
return 0;
|
||||
} else {
|
||||
baseline_points = rrdr_rows(rb);
|
||||
pd = mallocz(sizeof(struct per_dim) * rb->d);
|
||||
b_dims = rb->d;
|
||||
for (c = 0; c != rrdr_rows(rb) ; ++c) {
|
||||
RRDDIM *d;
|
||||
for (j = 0, d = rb->st->dimensions ; d && j < rb->d ; ++j, d = d->next) {
|
||||
calculated_number *cn = &rb->v[ c * rb->d ];
|
||||
if (!c) {
|
||||
//TODO use points from query
|
||||
pd[j].dimension = strdupz (d->name);
|
||||
pd[j].baseline[c] = cn[j];
|
||||
} else {
|
||||
pd[j].baseline[c] = cn[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
rrdr_free(owa, rb);
|
||||
onewayalloc_destroy(owa);
|
||||
if (!pd)
|
||||
return 0;
|
||||
|
||||
//get highlight
|
||||
owa = onewayalloc_create(0);
|
||||
RRDR *rh = rrd2rrdr(owa, st, max_points, highlight_after, highlight_before, group_method, group_time, options, NULL, context_param_list, 0);
|
||||
if(!rh) {
|
||||
info("Cannot generate metric correlations output with these parameters on this chart.");
|
||||
freez(pd);
|
||||
onewayalloc_destroy(owa);
|
||||
return 0;
|
||||
} else {
|
||||
if (rh->d != b_dims) {
|
||||
//TODO handle different dims
|
||||
rrdr_free(owa, rh);
|
||||
onewayalloc_destroy(owa);
|
||||
freez(pd);
|
||||
return 0;
|
||||
}
|
||||
highlight_points = rrdr_rows(rh);
|
||||
for (c = 0; c != rrdr_rows(rh) ; ++c) {
|
||||
RRDDIM *d;
|
||||
for (j = 0, d = rh->st->dimensions ; d && j < rh->d ; ++j, d = d->next) {
|
||||
calculated_number *cn = &rh->v[ c * rh->d ];
|
||||
pd[j].highlight[c] = cn[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
rrdr_free(owa, rh);
|
||||
onewayalloc_destroy(owa);
|
||||
|
||||
for (i = 0; i < b_dims; i++) {
|
||||
fill_nan(&pd[i], highlight_points, baseline_points);
|
||||
}
|
||||
|
||||
for (i = 0; i < b_dims; i++) {
|
||||
run_diffs_and_rev(&pd[i], highlight_points, baseline_points);
|
||||
}
|
||||
|
||||
double d=0, prob=0;
|
||||
for (i=0;i < j ;i++) {
|
||||
if (baseline_points && highlight_points) {
|
||||
kstwo(pd[i].baseline_diffs, baseline_points-1, pd[i].highlight_diffs, highlight_points-1, &d, &prob);
|
||||
buffer_sprintf(wb, "\t\t\t\t\"%s\": %f", pd[i].dimension, prob);
|
||||
if (i != j-1)
|
||||
buffer_sprintf(wb, ",\n");
|
||||
else
|
||||
buffer_sprintf(wb, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
freez(pd);
|
||||
return j;
|
||||
}
|
||||
|
||||
void metric_correlations (RRDHOST *host, BUFFER *wb, long long baseline_after, long long baseline_before, long long highlight_after, long long highlight_before, long long max_points)
|
||||
{
|
||||
info ("Running metric correlations, highlight_after: %lld, highlight_before: %lld, baseline_after: %lld, baseline_before: %lld, max_points: %lld", highlight_after, highlight_before, baseline_after, baseline_before, max_points);
|
||||
|
||||
if (!enable_metric_correlations) {
|
||||
error("Metric correlations functionality is not enabled.");
|
||||
buffer_strcat(wb, "{\"error\": \"Metric correlations functionality is not enabled.\" }");
|
||||
return;
|
||||
}
|
||||
|
||||
if (highlight_before <= highlight_after || baseline_before <= baseline_after) {
|
||||
error("Invalid baseline or highlight ranges.");
|
||||
buffer_strcat(wb, "{\"error\": \"Invalid baseline or highlight ranges.\" }");
|
||||
return;
|
||||
}
|
||||
|
||||
long long dims = 0, total_dims = 0;
|
||||
RRDSET *st;
|
||||
size_t c = 0;
|
||||
BUFFER *wdims = buffer_create(1000);
|
||||
|
||||
if (!max_points || max_points > MAX_POINTS)
|
||||
max_points = MAX_POINTS;
|
||||
|
||||
//dont lock here and wait for results
|
||||
//get the charts and run mc after
|
||||
//should not be a problem for the query
|
||||
struct charts *charts = NULL;
|
||||
rrdhost_rdlock(host);
|
||||
rrdset_foreach_read(st, host) {
|
||||
if (rrdset_is_available_for_viewers(st)) {
|
||||
rrdset_rdlock(st);
|
||||
struct charts *chart = callocz(1, sizeof(struct charts));
|
||||
chart->st = st;
|
||||
chart->next = NULL;
|
||||
if (charts) {
|
||||
chart->next = charts;
|
||||
}
|
||||
charts = chart;
|
||||
}
|
||||
}
|
||||
rrdhost_unlock(host);
|
||||
|
||||
buffer_strcat(wb, "{\n\t\"correlated_charts\": {");
|
||||
|
||||
for (struct charts *ch = charts; ch; ch = ch->next) {
|
||||
buffer_flush(wdims);
|
||||
dims = run_metric_correlations(wdims, ch->st, baseline_after, baseline_before, highlight_after, highlight_before, max_points);
|
||||
if (dims) {
|
||||
if (c)
|
||||
buffer_strcat(wb, "\t\t},");
|
||||
buffer_strcat(wb, "\n\t\t\"");
|
||||
buffer_strcat(wb, ch->st->id);
|
||||
buffer_strcat(wb, "\": {\n");
|
||||
buffer_strcat(wb, "\t\t\t\"context\": \"");
|
||||
buffer_strcat(wb, ch->st->context);
|
||||
buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
|
||||
buffer_sprintf(wb, "%s", buffer_tostring(wdims));
|
||||
buffer_strcat(wb, "\t\t\t}\n");
|
||||
total_dims += dims;
|
||||
c++;
|
||||
}
|
||||
}
|
||||
buffer_strcat(wb, "\t\t}\n");
|
||||
buffer_sprintf(wb, "\t},\n\t\"total_dimensions_count\": %lld\n}", total_dims);
|
||||
|
||||
if (!total_dims) {
|
||||
buffer_flush(wb);
|
||||
buffer_strcat(wb, "{\"error\": \"No results from metric correlations.\" }");
|
||||
}
|
||||
|
||||
struct charts* ch;
|
||||
while(charts){
|
||||
ch = charts;
|
||||
charts = charts->next;
|
||||
rrdset_unlock(ch->st);
|
||||
free(ch);
|
||||
}
|
||||
|
||||
buffer_free(wdims);
|
||||
info ("Done running metric correlations");
|
||||
}
|
10
database/metric_correlations.h
Normal file
10
database/metric_correlations.h
Normal file
|
@ -0,0 +1,10 @@
|
|||
// SPDX-License-Identifier: GPL-3.0-or-later
|
||||
|
||||
#ifndef NETDATA_METRIC_CORRELATIONS_H
|
||||
#define NETDATA_METRIC_CORRELATIONS_H 1
|
||||
|
||||
extern int enable_metric_correlations;
|
||||
|
||||
void metric_correlations (RRDHOST *host, BUFFER *wb, long long selected_after, long long selected_before, long long reference_after, long long reference_before, long long max_points);
|
||||
|
||||
#endif //NETDATA_METRIC_CORRELATIONS_H
|
|
@ -1299,6 +1299,50 @@ static int web_client_api_request_v1_aclk_state(RRDHOST *host, struct web_client
|
|||
return HTTP_RESP_OK;
|
||||
}
|
||||
|
||||
int web_client_api_request_v1_metric_correlations(RRDHOST *host, struct web_client *w, char *url) {
|
||||
if (!netdata_ready)
|
||||
return HTTP_RESP_BACKEND_FETCH_FAILED;
|
||||
|
||||
long long baseline_after = 0, baseline_before = 0, highlight_after = 0, highlight_before = 0, max_points = 0;
|
||||
|
||||
while (url) {
|
||||
char *value = mystrsep(&url, "&");
|
||||
if (!value || !*value)
|
||||
continue;
|
||||
|
||||
char *name = mystrsep(&value, "=");
|
||||
if (!name || !*name)
|
||||
continue;
|
||||
if (!value || !*value)
|
||||
continue;
|
||||
|
||||
if (!strcmp(name, "baseline_after"))
|
||||
baseline_after = (long long) strtoul(value, NULL, 0);
|
||||
else if (!strcmp(name, "baseline_before"))
|
||||
baseline_before = (long long) strtoul(value, NULL, 0);
|
||||
else if (!strcmp(name, "highlight_after"))
|
||||
highlight_after = (long long) strtoul(value, NULL, 0);
|
||||
else if (!strcmp(name, "highlight_before"))
|
||||
highlight_before = (long long) strtoul(value, NULL, 0);
|
||||
else if (!strcmp(name, "max_points"))
|
||||
max_points = (long long) strtoul(value, NULL, 0);
|
||||
|
||||
}
|
||||
|
||||
BUFFER *wb = w->response.data;
|
||||
buffer_flush(wb);
|
||||
wb->contenttype = CT_APPLICATION_JSON;
|
||||
buffer_no_cacheable(wb);
|
||||
|
||||
if (!highlight_after || !highlight_before)
|
||||
buffer_strcat(wb, "{\"error\": \"Missing or invalid required highlight after and before parameters.\" }");
|
||||
else {
|
||||
metric_correlations(host, wb, baseline_after, baseline_before, highlight_after, highlight_before, max_points);
|
||||
}
|
||||
|
||||
return HTTP_RESP_OK;
|
||||
}
|
||||
|
||||
static struct api_command {
|
||||
const char *command;
|
||||
uint32_t hash;
|
||||
|
@ -1330,8 +1374,9 @@ static struct api_command {
|
|||
{ "ml_info", 0, WEB_CLIENT_ACL_DASHBOARD, web_client_api_request_v1_ml_info },
|
||||
#endif
|
||||
|
||||
{ "manage/health", 0, WEB_CLIENT_ACL_MGMT, web_client_api_request_v1_mgmt_health },
|
||||
{ "aclk", 0, WEB_CLIENT_ACL_DASHBOARD, web_client_api_request_v1_aclk_state },
|
||||
{ "manage/health", 0, WEB_CLIENT_ACL_MGMT, web_client_api_request_v1_mgmt_health },
|
||||
{ "aclk", 0, WEB_CLIENT_ACL_DASHBOARD, web_client_api_request_v1_aclk_state },
|
||||
{ "metric_correlations", 0, WEB_CLIENT_ACL_DASHBOARD, web_client_api_request_v1_metric_correlations },
|
||||
// terminator
|
||||
{ NULL, 0, WEB_CLIENT_ACL_NONE, NULL },
|
||||
};
|
||||
|
|
Loading…
Add table
Reference in a new issue