0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-05-02 08:20:10 +00:00
netdata_netdata/web/api/formatters/value/value.c
Costa Tsaousis 82150596e7
do not report dimensions that failed to be queried ()
* do not report dimensions that failed to be queried

* renamed SELECTED to QUERIED to have clarity on what it means

* fix wrong placement of continue
2023-02-07 11:25:41 +02:00

165 lines
4.5 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "value.h"
inline NETDATA_DOUBLE rrdr2value(RRDR *r, long i, RRDR_OPTIONS options, int *all_values_are_null, NETDATA_DOUBLE *anomaly_rate) {
QUERY_TARGET *qt = r->internal.qt;
long c;
const long used = qt->query.used;
NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
RRDR_VALUE_FLAGS *co = &r->o[ i * r->d ];
NETDATA_DOUBLE *ar = &r->ar[ i * r->d ];
NETDATA_DOUBLE sum = 0, min = 0, max = 0, v;
int all_null = 1, init = 1;
NETDATA_DOUBLE total = 1;
NETDATA_DOUBLE total_anomaly_rate = 0;
int set_min_max = 0;
if(unlikely(options & RRDR_OPTION_PERCENTAGE)) {
total = 0;
for (c = 0; c < used; c++) {
if(unlikely(!(r->od[c] & RRDR_DIMENSION_QUERIED))) continue;
NETDATA_DOUBLE n = cn[c];
if(likely((options & RRDR_OPTION_ABSOLUTE) && n < 0))
n = -n;
total += n;
}
// prevent a division by zero
if(total == 0) total = 1;
set_min_max = 1;
}
// for each dimension
for (c = 0; c < used; c++) {
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) continue;
if(unlikely(!(r->od[c] & RRDR_DIMENSION_QUERIED))) continue;
if(unlikely((options & RRDR_OPTION_NONZERO) && !(r->od[c] & RRDR_DIMENSION_NONZERO))) continue;
NETDATA_DOUBLE n = cn[c];
if(likely((options & RRDR_OPTION_ABSOLUTE) && n < 0))
n = -n;
if(unlikely(options & RRDR_OPTION_PERCENTAGE)) {
n = n * 100 / total;
if(unlikely(set_min_max)) {
r->min = r->max = n;
set_min_max = 0;
}
if(n < r->min) r->min = n;
if(n > r->max) r->max = n;
}
if(unlikely(init)) {
if(n > 0) {
min = 0;
max = n;
}
else {
min = n;
max = 0;
}
init = 0;
}
if(likely(!(co[c] & RRDR_VALUE_EMPTY))) {
all_null = 0;
sum += n;
}
if(n < min) min = n;
if(n > max) max = n;
total_anomaly_rate += ar[c];
}
if(anomaly_rate) {
if(!r->d) *anomaly_rate = 0;
else *anomaly_rate = total_anomaly_rate / (NETDATA_DOUBLE)r->d;
}
if(unlikely(all_null)) {
if(likely(all_values_are_null))
*all_values_are_null = 1;
return 0;
}
else {
if(likely(all_values_are_null))
*all_values_are_null = 0;
}
if(options & RRDR_OPTION_MIN2MAX)
v = max - min;
else
v = sum;
return v;
}
QUERY_VALUE rrdmetric2value(RRDHOST *host,
struct rrdcontext_acquired *rca, struct rrdinstance_acquired *ria, struct rrdmetric_acquired *rma,
time_t after, time_t before,
RRDR_OPTIONS options, RRDR_GROUPING group_method, const char *group_options,
size_t tier, time_t timeout, QUERY_SOURCE query_source, STORAGE_PRIORITY priority
) {
QUERY_TARGET_REQUEST qtr = {
.host = host,
.rca = rca,
.ria = ria,
.rma = rma,
.after = after,
.before = before,
.points = 1,
.options = options,
.group_method = group_method,
.group_options = group_options,
.tier = tier,
.timeout = timeout,
.query_source = query_source,
.priority = priority,
};
ONEWAYALLOC *owa = onewayalloc_create(16 * 1024);
RRDR *r = rrd2rrdr(owa, query_target_create(&qtr));
QUERY_VALUE qv;
if(!r || rrdr_rows(r) == 0) {
qv = (QUERY_VALUE) {
.value = NAN,
.anomaly_rate = NAN,
};
}
else {
qv = (QUERY_VALUE) {
.after = r->after,
.before = r->before,
.points_read = r->internal.db_points_read,
.result_points = r->internal.result_points_generated,
};
for(size_t t = 0; t < storage_tiers ;t++)
qv.storage_points_per_tier[t] = r->internal.tier_points_read[t];
long i = (!(options & RRDR_OPTION_REVERSED))?(long)rrdr_rows(r) - 1:0;
int all_values_are_null = 0;
qv.value = rrdr2value(r, i, options, &all_values_are_null, &qv.anomaly_rate);
if(all_values_are_null) {
qv.value = NAN;
qv.anomaly_rate = NAN;
}
}
rrdr_free(owa, r);
onewayalloc_destroy(owa);
return qv;
}