mirror of
https://github.com/netdata/netdata.git
synced 2025-04-22 04:31:08 +00:00

* Database engine prototype version 0 * Database engine initial integration with netdata POC * Scalable database engine with file and memory management. * Database engine integration with netdata * Added MIN MAX definitions to fix alpine build of travis CI * Bugfix for backends and new DB engine, remove useless rrdset_time2slot() calls and erroneous checks * DB engine disk protocol correction * Moved DB engine storage file location to /var/cache/netdata/{host}/dbengine * Fix configure to require openSSL for DB engine * Fix netdata daemon health not holding read lock when iterating chart dimensions * Optimized query API for new DB engine and old netdata DB fallback code-path * netdata database internal query API improvements and cleanup * Bugfix for DB engine queries returning empty values * Added netdata internal check for data queries for old and new DB * Added statistics to DB engine and fixed memory corruption bug * Added preliminary charts for DB engine statistics * Changed DB engine ratio statistics to incremental * Added netdata statistics charts for DB engine internal statistics * Fix for netdata not compiling successfully when missing dbengine dependencies * Added DB engine functional test to netdata unittest command parameter * Implemented DB engine dataset generator based on example.random chart * Fix build error in CI * Support older versions of libuv1 * Fixes segmentation fault when using multiple DB engine instances concurrently * Fix memory corruption bug * Fixed createdataset advanced option not exiting * Fix for DB engine not working on FreeBSD * Support FreeBSD library paths of new dependencies * Workaround for unsupported O_DIRECT in OS X * Fix unittest crashing during cleanup * Disable DB engine FS caching in Apple OS X since O_DIRECT is not available * Fix segfault when unittest and DB engine dataset generator don't have permissions to create temporary host * Modified DB engine dataset generator to create multiple files * Toned down overzealous page cache prefetcher * Reduce internal memory fragmentation for page-cache data pages * Added documentation describing the DB engine * Documentation bugfixes * Fixed unit tests compilation errors since last rebase * Added note to back-up the DB engine files in documentation * Added codacy fix. * Support old gcc versions for atomic counters in DB engine
1005 lines
39 KiB
C
1005 lines
39 KiB
C
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "query.h"
|
|
#include "web/api/formatters/rrd2json.h"
|
|
#include "rrdr.h"
|
|
|
|
#include "average/average.h"
|
|
#include "incremental_sum/incremental_sum.h"
|
|
#include "max/max.h"
|
|
#include "median/median.h"
|
|
#include "min/min.h"
|
|
#include "sum/sum.h"
|
|
#include "stddev/stddev.h"
|
|
#include "ses/ses.h"
|
|
#include "des/des.h"
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static struct {
|
|
const char *name;
|
|
uint32_t hash;
|
|
RRDR_GROUPING value;
|
|
|
|
// One time initialization for the module.
|
|
// This is called once, when netdata starts.
|
|
void (*init)(void);
|
|
|
|
// Allocate all required structures for a query.
|
|
// This is called once for each netdata query.
|
|
void *(*create)(struct rrdresult *r);
|
|
|
|
// Cleanup collected values, but don't destroy the structures.
|
|
// This is called when the query engine switches dimensions,
|
|
// as part of the same query (so same chart, switching metric).
|
|
void (*reset)(struct rrdresult *r);
|
|
|
|
// Free all resources allocated for the query.
|
|
void (*free)(struct rrdresult *r);
|
|
|
|
// Add a single value into the calculation.
|
|
// The module may decide to cache it, or use it in the fly.
|
|
void (*add)(struct rrdresult *r, calculated_number value);
|
|
|
|
// Generate a single result for the values added so far.
|
|
// More values and points may be requested later.
|
|
// It is up to the module to reset its internal structures
|
|
// when flushing it (so for a few modules it may be better to
|
|
// continue after a flush as if nothing changed, for others a
|
|
// cleanup of the internal structures may be required).
|
|
calculated_number (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
|
|
} api_v1_data_groups[] = {
|
|
{.name = "average",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average
|
|
},
|
|
{.name = "mean", // alias on 'average'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average
|
|
},
|
|
{.name = "incremental_sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_incremental_sum,
|
|
.reset = grouping_reset_incremental_sum,
|
|
.free = grouping_free_incremental_sum,
|
|
.add = grouping_add_incremental_sum,
|
|
.flush = grouping_flush_incremental_sum
|
|
},
|
|
{.name = "incremental-sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_incremental_sum,
|
|
.reset = grouping_reset_incremental_sum,
|
|
.free = grouping_free_incremental_sum,
|
|
.add = grouping_add_incremental_sum,
|
|
.flush = grouping_flush_incremental_sum
|
|
},
|
|
{.name = "median",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= grouping_create_median,
|
|
.reset = grouping_reset_median,
|
|
.free = grouping_free_median,
|
|
.add = grouping_add_median,
|
|
.flush = grouping_flush_median
|
|
},
|
|
{.name = "min",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MIN,
|
|
.init = NULL,
|
|
.create= grouping_create_min,
|
|
.reset = grouping_reset_min,
|
|
.free = grouping_free_min,
|
|
.add = grouping_add_min,
|
|
.flush = grouping_flush_min
|
|
},
|
|
{.name = "max",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MAX,
|
|
.init = NULL,
|
|
.create= grouping_create_max,
|
|
.reset = grouping_reset_max,
|
|
.free = grouping_free_max,
|
|
.add = grouping_add_max,
|
|
.flush = grouping_flush_max
|
|
},
|
|
{.name = "sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_sum,
|
|
.reset = grouping_reset_sum,
|
|
.free = grouping_free_sum,
|
|
.add = grouping_add_sum,
|
|
.flush = grouping_flush_sum
|
|
},
|
|
|
|
// standard deviation
|
|
{.name = "stddev",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_STDDEV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_stddev
|
|
},
|
|
{.name = "cv", // coefficient variation is calculated by stddev
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev, // not an error, stddev calculates this too
|
|
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
|
|
.free = grouping_free_stddev, // not an error, stddev calculates this too
|
|
.add = grouping_add_stddev, // not an error, stddev calculates this too
|
|
.flush = grouping_flush_coefficient_of_variation
|
|
},
|
|
{.name = "rsd", // alias of 'cv'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev, // not an error, stddev calculates this too
|
|
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
|
|
.free = grouping_free_stddev, // not an error, stddev calculates this too
|
|
.add = grouping_add_stddev, // not an error, stddev calculates this too
|
|
.flush = grouping_flush_coefficient_of_variation
|
|
},
|
|
|
|
/*
|
|
{.name = "mean", // same as average, no need to define it again
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MEAN,
|
|
.setup = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_mean
|
|
},
|
|
*/
|
|
|
|
/*
|
|
{.name = "variance", // meaningless to offer
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_VARIANCE,
|
|
.setup = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_variance
|
|
},
|
|
*/
|
|
|
|
// single exponential smoothing
|
|
{.name = "ses",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = grouping_init_ses,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses
|
|
},
|
|
{.name = "ema", // alias for 'ses'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses
|
|
},
|
|
{.name = "ewma", // alias for ses
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses
|
|
},
|
|
|
|
// double exponential smoothing
|
|
{.name = "des",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_DES,
|
|
.init = grouping_init_des,
|
|
.create= grouping_create_des,
|
|
.reset = grouping_reset_des,
|
|
.free = grouping_free_des,
|
|
.add = grouping_add_des,
|
|
.flush = grouping_flush_des
|
|
},
|
|
|
|
// terminator
|
|
{.name = NULL,
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_UNDEFINED,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average
|
|
}
|
|
};
|
|
|
|
void web_client_api_v1_init_grouping(void) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
|
|
|
|
if(api_v1_data_groups[i].init)
|
|
api_v1_data_groups[i].init();
|
|
}
|
|
}
|
|
|
|
const char *group_method2string(RRDR_GROUPING group) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
if(api_v1_data_groups[i].value == group) {
|
|
return api_v1_data_groups[i].name;
|
|
}
|
|
}
|
|
|
|
return "unknown-group-method";
|
|
}
|
|
|
|
RRDR_GROUPING web_client_api_request_v1_data_group(const char *name, RRDR_GROUPING def) {
|
|
int i;
|
|
|
|
uint32_t hash = simple_hash(name);
|
|
for(i = 0; api_v1_data_groups[i].name ; i++)
|
|
if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
|
|
return api_v1_data_groups[i].value;
|
|
|
|
return def;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void rrdr_disable_not_selected_dimensions(RRDR *r, RRDR_OPTIONS options, const char *dims) {
|
|
rrdset_check_rdlock(r->st);
|
|
|
|
if(unlikely(!dims || !*dims || (dims[0] == '*' && dims[1] == '\0'))) return;
|
|
|
|
int match_ids = 0, match_names = 0;
|
|
|
|
if(unlikely(options & RRDR_OPTION_MATCH_IDS))
|
|
match_ids = 1;
|
|
if(unlikely(options & RRDR_OPTION_MATCH_NAMES))
|
|
match_names = 1;
|
|
|
|
if(likely(!match_ids && !match_names))
|
|
match_ids = match_names = 1;
|
|
|
|
SIMPLE_PATTERN *pattern = simple_pattern_create(dims, ",|\t\r\n\f\v", SIMPLE_PATTERN_EXACT);
|
|
|
|
RRDDIM *d;
|
|
long c, dims_selected = 0, dims_not_hidden_not_zero = 0;
|
|
for(c = 0, d = r->st->dimensions; d ;c++, d = d->next) {
|
|
if( (match_ids && simple_pattern_matches(pattern, d->id))
|
|
|| (match_names && simple_pattern_matches(pattern, d->name))
|
|
) {
|
|
r->od[c] |= RRDR_DIMENSION_SELECTED;
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) r->od[c] &= ~RRDR_DIMENSION_HIDDEN;
|
|
dims_selected++;
|
|
|
|
// since the user needs this dimension
|
|
// make it appear as NONZERO, to return it
|
|
// even if the dimension has only zeros
|
|
// unless option non_zero is set
|
|
if(unlikely(!(options & RRDR_OPTION_NONZERO)))
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
|
|
// count the visible dimensions
|
|
if(likely(r->od[c] & RRDR_DIMENSION_NONZERO))
|
|
dims_not_hidden_not_zero++;
|
|
}
|
|
else {
|
|
r->od[c] |= RRDR_DIMENSION_HIDDEN;
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
|
|
}
|
|
}
|
|
simple_pattern_free(pattern);
|
|
|
|
// check if all dimensions are hidden
|
|
if(unlikely(!dims_not_hidden_not_zero && dims_selected)) {
|
|
// there are a few selected dimensions
|
|
// but they are all zero
|
|
// enable the selected ones
|
|
// to avoid returning an empty chart
|
|
for(c = 0, d = r->st->dimensions; d ;c++, d = d->next)
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED))
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// helpers to find our way in RRDR
|
|
|
|
static inline RRDR_VALUE_FLAGS *rrdr_line_options(RRDR *r, long rrdr_line) {
|
|
return &r->o[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline calculated_number *rrdr_line_values(RRDR *r, long rrdr_line) {
|
|
return &r->v[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline long rrdr_line_init(RRDR *r, time_t t, long rrdr_line) {
|
|
rrdr_line++;
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
|
|
if(unlikely(rrdr_line >= r->n))
|
|
error("INTERNAL ERROR: requested to step above RRDR size for chart '%s'", r->st->name);
|
|
|
|
if(unlikely(r->t[rrdr_line] != 0 && r->t[rrdr_line] != t))
|
|
error("INTERNAL ERROR: overwriting the timestamp of RRDR line %zu from %zu to %zu, of chart '%s'", (size_t)rrdr_line, (size_t)r->t[rrdr_line], (size_t)t, r->st->name);
|
|
|
|
#endif
|
|
|
|
// save the time
|
|
r->t[rrdr_line] = t;
|
|
|
|
return rrdr_line;
|
|
}
|
|
|
|
static inline void rrdr_done(RRDR *r, long rrdr_line) {
|
|
r->rows = rrdr_line + 1;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill RRDR for a single dimension
|
|
|
|
static inline void do_dimension(
|
|
RRDR *r
|
|
, long points_wanted
|
|
, RRDDIM *rd
|
|
, long dim_id_in_rrdr
|
|
, time_t after_wanted
|
|
, time_t before_wanted
|
|
){
|
|
RRDSET *st = r->st;
|
|
|
|
time_t
|
|
now = after_wanted,
|
|
dt = st->update_every,
|
|
max_date = 0,
|
|
min_date = 0;
|
|
|
|
long
|
|
group_size = r->group,
|
|
points_added = 0,
|
|
values_in_group = 0,
|
|
values_in_group_non_zero = 0,
|
|
rrdr_line = -1;
|
|
|
|
RRDR_VALUE_FLAGS
|
|
group_value_flags = RRDR_VALUE_NOTHING;
|
|
|
|
struct rrddim_query_handle handle;
|
|
uint8_t initialized_query;
|
|
|
|
calculated_number min = r->min, max = r->max;
|
|
size_t db_points_read = 0;
|
|
|
|
for(initialized_query = 0 ; points_added < points_wanted ; now += dt) {
|
|
|
|
// make sure we return data in the proper time range
|
|
if(unlikely(now > before_wanted)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
r->internal.log = "stopped, because attempted to access the db after 'wanted before'";
|
|
#endif
|
|
break;
|
|
}
|
|
if(unlikely(now < after_wanted)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
r->internal.log = "skipped, because attempted to access the db before 'wanted after'";
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
if (unlikely(!initialized_query)) {
|
|
rd->state->query_ops.init(rd, &handle, now, before_wanted);
|
|
initialized_query = 1;
|
|
}
|
|
// read the value from the database
|
|
//storage_number n = rd->values[slot];
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
if (rd->rrd_memory_mode == RRD_MEMORY_MODE_DBENGINE) {
|
|
#ifdef ENABLE_DBENGINE
|
|
if (now != handle.rrdeng.now)
|
|
error("INTERNAL CHECK: Unaligned query for %s, database time: %ld, expected time: %ld", rd->id, (long)handle.rrdeng.now, (long)now);
|
|
#endif
|
|
} else if (rrdset_time2slot(st, now) != (long unsigned)handle.slotted.slot) {
|
|
error("INTERNAL CHECK: Unaligned query for %s, database slot: %lu, expected slot: %lu", rd->id, (long unsigned)handle.slotted.slot, rrdset_time2slot(st, now));
|
|
}
|
|
#endif
|
|
storage_number n = rd->state->query_ops.next_metric(&handle);
|
|
calculated_number value = NAN;
|
|
if(likely(does_storage_number_exist(n))) {
|
|
|
|
value = unpack_storage_number(n);
|
|
if(likely(value != 0.0))
|
|
values_in_group_non_zero++;
|
|
|
|
if(unlikely(did_storage_number_reset(n)))
|
|
group_value_flags |= RRDR_VALUE_RESET;
|
|
|
|
}
|
|
|
|
// add this value for grouping
|
|
r->internal.grouping_add(r, value);
|
|
values_in_group++;
|
|
db_points_read++;
|
|
|
|
if(unlikely(values_in_group == group_size)) {
|
|
rrdr_line = rrdr_line_init(r, now, rrdr_line);
|
|
|
|
if(unlikely(!min_date)) min_date = now;
|
|
max_date = now;
|
|
|
|
// find the place to store our values
|
|
RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_line * r->d + dim_id_in_rrdr];
|
|
|
|
// update the dimension options
|
|
if(likely(values_in_group_non_zero))
|
|
r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
|
|
|
|
// store the specific point options
|
|
*rrdr_value_options_ptr = group_value_flags;
|
|
|
|
// store the value
|
|
calculated_number value = r->internal.grouping_flush(r, rrdr_value_options_ptr);
|
|
r->v[rrdr_line * r->d + dim_id_in_rrdr] = value;
|
|
|
|
if(likely(points_added || dim_id_in_rrdr)) {
|
|
// find the min/max across all dimensions
|
|
|
|
if(unlikely(value < min)) min = value;
|
|
if(unlikely(value > max)) max = value;
|
|
|
|
}
|
|
else {
|
|
// runs only when dim_id_in_rrdr == 0 && points_added == 0
|
|
// so, on the first point added for the query.
|
|
min = max = value;
|
|
}
|
|
|
|
points_added++;
|
|
values_in_group = 0;
|
|
group_value_flags = RRDR_VALUE_NOTHING;
|
|
values_in_group_non_zero = 0;
|
|
}
|
|
}
|
|
if (likely(initialized_query))
|
|
rd->state->query_ops.finalize(&handle);
|
|
|
|
r->internal.db_points_read += db_points_read;
|
|
r->internal.result_points_generated += points_added;
|
|
|
|
r->min = min;
|
|
r->max = max;
|
|
r->before = max_date;
|
|
r->after = min_date - (r->group - 1) * r->st->update_every;
|
|
rrdr_done(r, rrdr_line);
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
if(unlikely(r->rows != points_added))
|
|
error("INTERNAL ERROR: %s.%s added %zu rows, but RRDR says I added %zu.", r->st->name, rd->name, (size_t)points_added, (size_t)r->rows);
|
|
#endif
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill RRDR for the whole chart
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
static void rrd2rrdr_log_request_response_metdata(RRDR *r
|
|
, RRDR_GROUPING group_method
|
|
, int aligned
|
|
, long group
|
|
, long resampling_time
|
|
, long resampling_group
|
|
, time_t after_wanted
|
|
, time_t after_requested
|
|
, time_t before_wanted
|
|
, time_t before_requested
|
|
, long points_requested
|
|
, long points_wanted
|
|
//, size_t after_slot
|
|
//, size_t before_slot
|
|
, const char *msg
|
|
) {
|
|
info("INTERNAL ERROR: rrd2rrdr() on %s update every %d with %s grouping %s (group: %ld, resampling_time: %ld, resampling_group: %ld), "
|
|
"after (got: %zu, want: %zu, req: %zu, db: %zu), "
|
|
"before (got: %zu, want: %zu, req: %zu, db: %zu), "
|
|
"duration (got: %zu, want: %zu, req: %zu, db: %zu), "
|
|
//"slot (after: %zu, before: %zu, delta: %zu), "
|
|
"points (got: %ld, want: %ld, req: %ld, db: %ld), "
|
|
"%s"
|
|
, r->st->name
|
|
, r->st->update_every
|
|
|
|
// grouping
|
|
, (aligned) ? "aligned" : "unaligned"
|
|
, group_method2string(group_method)
|
|
, group
|
|
, resampling_time
|
|
, resampling_group
|
|
|
|
// after
|
|
, (size_t)r->after
|
|
, (size_t)after_wanted
|
|
, (size_t)after_requested
|
|
, (size_t)rrdset_first_entry_t(r->st)
|
|
|
|
// before
|
|
, (size_t)r->before
|
|
, (size_t)before_wanted
|
|
, (size_t)before_requested
|
|
, (size_t)rrdset_last_entry_t(r->st)
|
|
|
|
// duration
|
|
, (size_t)(r->before - r->after + r->st->update_every)
|
|
, (size_t)(before_wanted - after_wanted + r->st->update_every)
|
|
, (size_t)(before_requested - after_requested)
|
|
, (size_t)((rrdset_last_entry_t(r->st) - rrdset_first_entry_t(r->st)) + r->st->update_every)
|
|
|
|
// slot
|
|
/*
|
|
, after_slot
|
|
, before_slot
|
|
, (after_slot > before_slot) ? (r->st->entries - after_slot + before_slot) : (before_slot - after_slot)
|
|
*/
|
|
|
|
// points
|
|
, r->rows
|
|
, points_wanted
|
|
, points_requested
|
|
, r->st->entries
|
|
|
|
// message
|
|
, msg
|
|
);
|
|
}
|
|
#endif // NETDATA_INTERNAL_CHECKS
|
|
|
|
RRDR *rrd2rrdr(
|
|
RRDSET *st
|
|
, long points_requested
|
|
, long long after_requested
|
|
, long long before_requested
|
|
, RRDR_GROUPING group_method
|
|
, long resampling_time_requested
|
|
, RRDR_OPTIONS options
|
|
, const char *dimensions
|
|
) {
|
|
int aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
|
|
|
|
int absolute_period_requested = -1;
|
|
|
|
time_t first_entry_t = rrdset_first_entry_t(st);
|
|
time_t last_entry_t = rrdset_last_entry_t(st);
|
|
|
|
if(before_requested == 0 && after_requested == 0) {
|
|
// dump the all the data
|
|
before_requested = last_entry_t;
|
|
after_requested = first_entry_t;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
// allow relative for before (smaller than API_RELATIVE_TIME_MAX)
|
|
if(((before_requested < 0)?-before_requested:before_requested) <= API_RELATIVE_TIME_MAX) {
|
|
if(abs(before_requested) % st->update_every) {
|
|
// make sure it is multiple of st->update_every
|
|
if(before_requested < 0) before_requested = before_requested - st->update_every - before_requested % st->update_every;
|
|
else before_requested = before_requested + st->update_every - before_requested % st->update_every;
|
|
}
|
|
if(before_requested > 0) before_requested = first_entry_t + before_requested;
|
|
else before_requested = last_entry_t + before_requested;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
// allow relative for after (smaller than API_RELATIVE_TIME_MAX)
|
|
if(((after_requested < 0)?-after_requested:after_requested) <= API_RELATIVE_TIME_MAX) {
|
|
if(after_requested == 0) after_requested = -st->update_every;
|
|
if(abs(after_requested) % st->update_every) {
|
|
// make sure it is multiple of st->update_every
|
|
if(after_requested < 0) after_requested = after_requested - st->update_every - after_requested % st->update_every;
|
|
else after_requested = after_requested + st->update_every - after_requested % st->update_every;
|
|
}
|
|
after_requested = before_requested + after_requested;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
if(absolute_period_requested == -1)
|
|
absolute_period_requested = 1;
|
|
|
|
// make sure they are within our timeframe
|
|
if(before_requested > last_entry_t) before_requested = last_entry_t;
|
|
if(before_requested < first_entry_t) before_requested = first_entry_t;
|
|
|
|
if(after_requested > last_entry_t) after_requested = last_entry_t;
|
|
if(after_requested < first_entry_t) after_requested = first_entry_t;
|
|
|
|
// check if they are reversed
|
|
if(after_requested > before_requested) {
|
|
time_t tmp = before_requested;
|
|
before_requested = after_requested;
|
|
after_requested = tmp;
|
|
}
|
|
|
|
// the duration of the chart
|
|
time_t duration = before_requested - after_requested;
|
|
long available_points = duration / st->update_every;
|
|
|
|
if(duration <= 0 || available_points <= 0)
|
|
return rrdr_create(st, 1);
|
|
|
|
// check the number of wanted points in the result
|
|
if(unlikely(points_requested < 0)) points_requested = -points_requested;
|
|
if(unlikely(points_requested > available_points)) points_requested = available_points;
|
|
if(unlikely(points_requested == 0)) points_requested = available_points;
|
|
|
|
// calculate the desired grouping of source data points
|
|
long group = available_points / points_requested;
|
|
if(unlikely(group <= 0)) group = 1;
|
|
if(unlikely(available_points % points_requested > points_requested / 2)) group++; // rounding to the closest integer
|
|
|
|
// resampling_time_requested enforces a certain grouping multiple
|
|
calculated_number resampling_divisor = 1.0;
|
|
long resampling_group = 1;
|
|
if(unlikely(resampling_time_requested > st->update_every)) {
|
|
if (unlikely(resampling_time_requested > duration)) {
|
|
// group_time is above the available duration
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
info("INTERNAL CHECK: %s: requested gtime %ld secs, is greater than the desired duration %ld secs", st->id, resampling_time_requested, duration);
|
|
#endif
|
|
|
|
after_requested = before_requested - resampling_time_requested;
|
|
duration = before_requested - after_requested;
|
|
available_points = duration / st->update_every;
|
|
group = available_points / points_requested;
|
|
}
|
|
|
|
// if the duration is not aligned to resampling time
|
|
// extend the duration to the past, to avoid a gap at the chart
|
|
// only when the missing duration is above 1/10th of a point
|
|
if(duration % resampling_time_requested) {
|
|
time_t delta = duration % resampling_time_requested;
|
|
if(delta > resampling_time_requested / 10) {
|
|
after_requested -= resampling_time_requested - delta;
|
|
duration = before_requested - after_requested;
|
|
available_points = duration / st->update_every;
|
|
group = available_points / points_requested;
|
|
}
|
|
}
|
|
|
|
// the points we should group to satisfy gtime
|
|
resampling_group = resampling_time_requested / st->update_every;
|
|
if(unlikely(resampling_time_requested % st->update_every)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
info("INTERNAL CHECK: %s: requested gtime %ld secs, is not a multiple of the chart's data collection frequency %d secs", st->id, resampling_time_requested, st->update_every);
|
|
#endif
|
|
|
|
resampling_group++;
|
|
}
|
|
|
|
// adapt group according to resampling_group
|
|
if(unlikely(group < resampling_group)) group = resampling_group; // do not allow grouping below the desired one
|
|
if(unlikely(group % resampling_group)) group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
|
|
|
|
//resampling_divisor = group / resampling_group;
|
|
resampling_divisor = (calculated_number)(group * st->update_every) / (calculated_number)resampling_time_requested;
|
|
}
|
|
|
|
// now that we have group,
|
|
// align the requested timeframe to fit it.
|
|
|
|
if(aligned) {
|
|
// alignement has been requested, so align the values
|
|
before_requested -= (before_requested % group);
|
|
after_requested -= (after_requested % group);
|
|
}
|
|
|
|
// we align the request on requested_before
|
|
time_t before_wanted = before_requested;
|
|
if(likely(before_wanted > last_entry_t)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: rrd2rrdr() on %s, before_wanted is after db max", st->name);
|
|
#endif
|
|
|
|
before_wanted = last_entry_t - (last_entry_t % ( ((aligned)?group:1) * st->update_every ));
|
|
}
|
|
//size_t before_slot = rrdset_time2slot(st, before_wanted);
|
|
|
|
// we need to estimate the number of points, for having
|
|
// an integer number of values per point
|
|
long points_wanted = (before_wanted - after_requested) / (st->update_every * group);
|
|
|
|
time_t after_wanted = before_wanted - (points_wanted * group * st->update_every) + st->update_every;
|
|
if(unlikely(after_wanted < first_entry_t)) {
|
|
// hm... we go to the past, calculate again points_wanted using all the db from before_wanted to the beginning
|
|
points_wanted = (before_wanted - first_entry_t) / group;
|
|
|
|
// recalculate after wanted with the new number of points
|
|
after_wanted = before_wanted - (points_wanted * group * st->update_every) + st->update_every;
|
|
|
|
if(unlikely(after_wanted < first_entry_t)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: rrd2rrdr() on %s, after_wanted is before db min", st->name);
|
|
#endif
|
|
|
|
after_wanted = first_entry_t - (first_entry_t % ( ((aligned)?group:1) * st->update_every )) + ( ((aligned)?group:1) * st->update_every );
|
|
}
|
|
}
|
|
//size_t after_slot = rrdset_time2slot(st, after_wanted);
|
|
|
|
// check if they are reversed
|
|
if(unlikely(after_wanted > before_wanted)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: rrd2rrdr() on %s, reversed wanted after/before", st->name);
|
|
#endif
|
|
time_t tmp = before_wanted;
|
|
before_wanted = after_wanted;
|
|
after_wanted = tmp;
|
|
}
|
|
|
|
// recalculate points_wanted using the final time-frame
|
|
points_wanted = (before_wanted - after_wanted) / st->update_every / group + 1;
|
|
if(unlikely(points_wanted < 0)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: rrd2rrdr() on %s, points_wanted is %ld", st->name, points_wanted);
|
|
#endif
|
|
points_wanted = 0;
|
|
}
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
duration = before_wanted - after_wanted;
|
|
|
|
if(after_wanted < first_entry_t)
|
|
error("INTERNAL CHECK: after_wanted %u is too small, minimum %u", (uint32_t)after_wanted, (uint32_t)first_entry_t);
|
|
|
|
if(after_wanted > last_entry_t)
|
|
error("INTERNAL CHECK: after_wanted %u is too big, maximum %u", (uint32_t)after_wanted, (uint32_t)last_entry_t);
|
|
|
|
if(before_wanted < first_entry_t)
|
|
error("INTERNAL CHECK: before_wanted %u is too small, minimum %u", (uint32_t)before_wanted, (uint32_t)first_entry_t);
|
|
|
|
if(before_wanted > last_entry_t)
|
|
error("INTERNAL CHECK: before_wanted %u is too big, maximum %u", (uint32_t)before_wanted, (uint32_t)last_entry_t);
|
|
|
|
/*
|
|
if(before_slot >= (size_t)st->entries)
|
|
error("INTERNAL CHECK: before_slot is invalid %zu, expected 0 to %ld", before_slot, st->entries - 1);
|
|
|
|
if(after_slot >= (size_t)st->entries)
|
|
error("INTERNAL CHECK: after_slot is invalid %zu, expected 0 to %ld", after_slot, st->entries - 1);
|
|
*/
|
|
|
|
if(points_wanted > (before_wanted - after_wanted) / group / st->update_every + 1)
|
|
error("INTERNAL CHECK: points_wanted %ld is more than points %ld", points_wanted, (before_wanted - after_wanted) / group / st->update_every + 1);
|
|
|
|
if(group < resampling_group)
|
|
error("INTERNAL CHECK: group %ld is less than the desired group points %ld", group, resampling_group);
|
|
|
|
if(group > resampling_group && group % resampling_group)
|
|
error("INTERNAL CHECK: group %ld is not a multiple of the desired group points %ld", group, resampling_group);
|
|
#endif
|
|
|
|
// -------------------------------------------------------------------------
|
|
// initialize our result set
|
|
// this also locks the chart for us
|
|
|
|
RRDR *r = rrdr_create(st, points_wanted);
|
|
if(unlikely(!r)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL CHECK: Cannot create RRDR for %s, after=%u, before=%u, duration=%u, points=%ld", st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (uint32_t)duration, points_wanted);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
if(unlikely(!r->d || !points_wanted)) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL CHECK: Returning empty RRDR (no dimensions in RRDSET) for %s, after=%u, before=%u, duration=%zu, points=%ld", st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (size_t)duration, points_wanted);
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
if(unlikely(absolute_period_requested == 1))
|
|
r->result_options |= RRDR_RESULT_OPTION_ABSOLUTE;
|
|
else
|
|
r->result_options |= RRDR_RESULT_OPTION_RELATIVE;
|
|
|
|
// find how many dimensions we have
|
|
long dimensions_count = r->d;
|
|
|
|
// -------------------------------------------------------------------------
|
|
// initialize RRDR
|
|
|
|
r->group = group;
|
|
r->update_every = (int)group * st->update_every;
|
|
r->before = before_wanted;
|
|
r->after = after_wanted;
|
|
r->internal.points_wanted = points_wanted;
|
|
r->internal.resampling_group = resampling_group;
|
|
r->internal.resampling_divisor = resampling_divisor;
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// assign the processor functions
|
|
|
|
{
|
|
int i, found = 0;
|
|
for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
|
|
if(api_v1_data_groups[i].value == group_method) {
|
|
r->internal.grouping_create= api_v1_data_groups[i].create;
|
|
r->internal.grouping_reset = api_v1_data_groups[i].reset;
|
|
r->internal.grouping_free = api_v1_data_groups[i].free;
|
|
r->internal.grouping_add = api_v1_data_groups[i].add;
|
|
r->internal.grouping_flush = api_v1_data_groups[i].flush;
|
|
found = 1;
|
|
}
|
|
}
|
|
if(!found) {
|
|
errno = 0;
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: grouping method %u not found for chart '%s'. Using 'average'", (unsigned int)group_method, r->st->name);
|
|
#endif
|
|
r->internal.grouping_create= grouping_create_average;
|
|
r->internal.grouping_reset = grouping_reset_average;
|
|
r->internal.grouping_free = grouping_free_average;
|
|
r->internal.grouping_add = grouping_add_average;
|
|
r->internal.grouping_flush = grouping_flush_average;
|
|
}
|
|
}
|
|
|
|
// allocate any memory required by the grouping method
|
|
r->internal.grouping_data = r->internal.grouping_create(r);
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// disable the not-wanted dimensions
|
|
|
|
rrdset_check_rdlock(st);
|
|
|
|
if(dimensions)
|
|
rrdr_disable_not_selected_dimensions(r, options, dimensions);
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// do the work for each dimension
|
|
|
|
time_t max_after = 0, min_before = 0;
|
|
long max_rows = 0;
|
|
|
|
RRDDIM *rd;
|
|
long c, dimensions_used = 0, dimensions_nonzero = 0;
|
|
for(rd = st->dimensions, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
|
|
|
|
// if we need a percentage, we need to calculate all dimensions
|
|
if(unlikely(!(options & RRDR_OPTION_PERCENTAGE) && (r->od[c] & RRDR_DIMENSION_HIDDEN))) {
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
|
|
continue;
|
|
}
|
|
r->od[c] |= RRDR_DIMENSION_SELECTED;
|
|
|
|
// reset the grouping for the new dimension
|
|
r->internal.grouping_reset(r);
|
|
|
|
do_dimension(
|
|
r
|
|
, points_wanted
|
|
, rd
|
|
, c
|
|
, after_wanted
|
|
, before_wanted
|
|
);
|
|
|
|
if(r->od[c] & RRDR_DIMENSION_NONZERO)
|
|
dimensions_nonzero++;
|
|
|
|
// verify all dimensions are aligned
|
|
if(unlikely(!dimensions_used)) {
|
|
min_before = r->before;
|
|
max_after = r->after;
|
|
max_rows = r->rows;
|
|
}
|
|
else {
|
|
if(r->after != max_after) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)max_after, rd->name, (size_t)r->after);
|
|
#endif
|
|
r->after = (r->after > max_after) ? r->after : max_after;
|
|
}
|
|
|
|
if(r->before != min_before) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)min_before, rd->name, (size_t)r->before);
|
|
#endif
|
|
r->before = (r->before < min_before) ? r->before : min_before;
|
|
}
|
|
|
|
if(r->rows != max_rows) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("INTERNAL ERROR: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)max_rows, rd->name, (size_t)r->rows);
|
|
#endif
|
|
r->rows = (r->rows > max_rows) ? r->rows : max_rows;
|
|
}
|
|
}
|
|
|
|
dimensions_used++;
|
|
}
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
|
|
if(r->internal.log)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ r->internal.log);
|
|
|
|
if(r->rows != points_wanted)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'points' is not wanted 'points'");
|
|
|
|
if(aligned && (r->before % group) != 0)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "'before' is not aligned but alignment is required");
|
|
|
|
// 'after' should not be aligned, since we start inside the first group
|
|
//if(aligned && (r->after % group) != 0)
|
|
// rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
|
|
|
|
if(r->before != before_requested)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "chart is not aligned to requested 'before'");
|
|
|
|
if(r->before != before_wanted)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'before' is not wanted 'before'");
|
|
|
|
// reported 'after' varies, depending on group
|
|
if(r->after != after_wanted)
|
|
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'after' is not wanted 'after'");
|
|
|
|
#endif
|
|
|
|
// free all resources used by the grouping method
|
|
r->internal.grouping_free(r);
|
|
|
|
// when all the dimensions are zero, we should return all of them
|
|
if(unlikely(options & RRDR_OPTION_NONZERO && !dimensions_nonzero)) {
|
|
// all the dimensions are zero
|
|
// mark them as NONZERO to send them all
|
|
for(rd = st->dimensions, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) continue;
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
}
|
|
}
|
|
|
|
rrdr_query_completed(r->internal.db_points_read, r->internal.result_points_generated);
|
|
return r;
|
|
}
|