0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-13 17:19:11 +00:00
netdata_netdata/libnetdata/socket/socket.c
Costa Tsaousis 3e508c8f95
New logging layer ()
* cleanup of logging - wip

* first working iteration

* add errno annotator

* replace old logging functions with netdata_logger()

* cleanup

* update error_limit

* fix remanining error_limit references

* work on fatal()

* started working on structured logs

* full cleanup

* default logging to files; fix all plugins initialization

* fix formatting of numbers

* cleanup and reorg

* fix coverity issues

* cleanup obsolete code

* fix formatting of numbers

* fix log rotation

* fix for older systems

* add detection of systemd journal via stderr

* finished on access.log

* remove left-over transport

* do not add empty fields to the logs

* journal get compact uuids; X-Transaction-ID header is added in web responses

* allow compiling on systems without memfd sealing

* added libnetdata/uuid directory

* move datetime formatters to libnetdata

* add missing files

* link the makefiles in libnetdata

* added uuid_parse_flexi() to parse UUIDs with and without hyphens; the web server now read X-Transaction-ID and uses it for functions and web responses

* added stream receiver, sender, proc plugin and pluginsd log stack

* iso8601 advanced usage; line_splitter module in libnetdata; code cleanup

* add message ids to streaming inbound and outbound connections

* cleanup line_splitter between lines to avoid logging garbage; when killing children, kill them with SIGABRT if internal checks is enabled

* send SIGABRT to external plugins only if we are not shutting down

* fix cross cleanup in pluginsd parser

* fatal when there is a stack error in logs

* compile netdata with -fexceptions

* do not kill external plugins with SIGABRT

* metasync info logs to debug level

* added severity to logs

* added json output; added options per log output; added documentation; fixed issues mentioned

* allow memfd only on linux

* moved journal low level functions to journal.c/h

* move health logs to daemon.log with proper priorities

* fixed a couple of bugs; health log in journal

* updated docs

* systemd-cat-native command to push structured logs to journal from the command line

* fix makefiles

* restored NETDATA_LOG_SEVERITY_LEVEL

* fix makefiles

* systemd-cat-native can also work as the logger of Netdata scripts

* do not require a socket to systemd-journal to log-as-netdata

* alarm notify logs in native format

* properly compare log ids

* fatals log alerts; alarm-notify.sh working

* fix overflow warning

* alarm-notify.sh now logs the request (command line)

* anotate external plugins logs with the function cmd they run

* added context, component and type to alarm-notify.sh; shell sanitization removes control character and characters that may be expanded by bash

* reformatted alarm-notify logs

* unify cgroup-network-helper.sh

* added quotes around params

* charts.d.plugin switched logging to journal native

* quotes for logfmt

* unify the status codes of streaming receivers and senders

* alarm-notify: dont log anything, if there is nothing to do

* all external plugins log to stderr when running outside netdata; alarm-notify now shows an error when notifications menthod are needed but are not available

* migrate cgroup-name.sh to new logging

* systemd-cat-native now supports messages with newlines

* socket.c logs use priority

* cleanup log field types

* inherit the systemd set INVOCATION_ID if found

* allow systemd-cat-native to send messages to a systemd-journal-remote URL

* log2journal command that can convert structured logs to journal export format

* various fixes and documentation of log2journal

* updated log2journal docs

* updated log2journal docs

* updated documentation of fields

* allow compiling without libcurl

* do not use socket as format string

* added version information to newly added tools

* updated documentation and help messages

* fix the namespace socket path

* print errno with error

* do not timeout

* updated docs

* updated docs

* updated docs

* log2journal updated docs and params

* when talking to a remote journal, systemd-cat-native batches the messages

* enable lz4 compression for systemd-cat-native when sending messages to a systemd-journal-remote

* Revert "enable lz4 compression for systemd-cat-native when sending messages to a systemd-journal-remote"

This reverts commit b079d53c11.

* note about uncompressed traffic

* log2journal: code reorg and cleanup to make modular

* finished rewriting log2journal

* more comments

* rewriting rules support

* increased limits

* updated docs

* updated docs

* fix old log call

* use journal only when stderr is connected to journal

* update netdata.spec for libcurl, libpcre2 and log2journal

* pcre2-devel

* do not require pcre2 in centos < 8, amazonlinux < 2023, open suse

* log2journal only on systems pcre2 is available

* ignore log2journal in .gitignore

* avoid log2journal on centos 7, amazonlinux 2 and opensuse

* add pcre2-8 to static build

* undo last commit

* Bundle to static

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Add build deps for deb packages

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Add dependencies; build from source

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Test build for amazon linux and centos expect to fail for suse

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* fix minor oversight

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Reorg code

* Add the install from source (deps) as a TODO
* Not enable the build on suse ecosystem

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

---------

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>
Co-authored-by: Tasos Katsoulas <tasos@netdata.cloud>
2023-11-22 10:27:25 +02:00

2130 lines
66 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef _GNU_SOURCE
#define _GNU_SOURCE // for POLLRDHUP
#endif
#ifndef __BSD_VISIBLE
#define __BSD_VISIBLE // for POLLRDHUP
#endif
#include "../libnetdata.h"
bool ip_to_hostname(const char *ip, char *dst, size_t dst_len) {
if(!dst || !dst_len)
return false;
struct sockaddr_in sa;
struct sockaddr_in6 sa6;
struct sockaddr *sa_ptr;
int sa_len;
// Try to convert the IP address to sockaddr_in (IPv4)
if (inet_pton(AF_INET, ip, &(sa.sin_addr)) == 1) {
sa.sin_family = AF_INET;
sa_ptr = (struct sockaddr *)&sa;
sa_len = sizeof(sa);
}
// Try to convert the IP address to sockaddr_in6 (IPv6)
else if (inet_pton(AF_INET6, ip, &(sa6.sin6_addr)) == 1) {
sa6.sin6_family = AF_INET6;
sa_ptr = (struct sockaddr *)&sa6;
sa_len = sizeof(sa6);
}
else {
dst[0] = '\0';
return false;
}
// Perform the reverse lookup
int res = getnameinfo(sa_ptr, sa_len, dst, dst_len, NULL, 0, NI_NAMEREQD);
if(res != 0)
return false;
return true;
}
SOCKET_PEERS socket_peers(int sock_fd) {
SOCKET_PEERS peers;
if(sock_fd < 0) {
strncpyz(peers.peer.ip, "not connected", sizeof(peers.peer.ip) - 1);
peers.peer.port = 0;
strncpyz(peers.local.ip, "not connected", sizeof(peers.local.ip) - 1);
peers.local.port = 0;
return peers;
}
struct sockaddr_storage addr;
socklen_t addr_len = sizeof(addr);
// Get peer info
if (getpeername(sock_fd, (struct sockaddr *)&addr, &addr_len) == 0) {
if (addr.ss_family == AF_INET) { // IPv4
struct sockaddr_in *s = (struct sockaddr_in *)&addr;
inet_ntop(AF_INET, &s->sin_addr, peers.peer.ip, sizeof(peers.peer.ip));
peers.peer.port = ntohs(s->sin_port);
}
else { // IPv6
struct sockaddr_in6 *s = (struct sockaddr_in6 *)&addr;
inet_ntop(AF_INET6, &s->sin6_addr, peers.peer.ip, sizeof(peers.peer.ip));
peers.peer.port = ntohs(s->sin6_port);
}
}
else {
strncpyz(peers.peer.ip, "unknown", sizeof(peers.peer.ip) - 1);
peers.peer.port = 0;
}
// Get local info
addr_len = sizeof(addr);
if (getsockname(sock_fd, (struct sockaddr *)&addr, &addr_len) == 0) {
if (addr.ss_family == AF_INET) { // IPv4
struct sockaddr_in *s = (struct sockaddr_in *) &addr;
inet_ntop(AF_INET, &s->sin_addr, peers.local.ip, sizeof(peers.local.ip));
peers.local.port = ntohs(s->sin_port);
} else { // IPv6
struct sockaddr_in6 *s = (struct sockaddr_in6 *) &addr;
inet_ntop(AF_INET6, &s->sin6_addr, peers.local.ip, sizeof(peers.local.ip));
peers.local.port = ntohs(s->sin6_port);
}
}
else {
strncpyz(peers.local.ip, "unknown", sizeof(peers.local.ip) - 1);
peers.local.port = 0;
}
return peers;
}
// --------------------------------------------------------------------------------------------------------------------
// various library calls
#ifdef __gnu_linux__
#define LARGE_SOCK_SIZE 33554431 // don't ask why - I found it at brubeck source - I guess it is just a large number
#else
#define LARGE_SOCK_SIZE 4096
#endif
bool fd_is_socket(int fd) {
int type;
socklen_t len = sizeof(type);
if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) == -1)
return false;
return true;
}
bool sock_has_output_error(int fd) {
if(fd < 0) {
//internal_error(true, "invalid socket %d", fd);
return false;
}
// if(!fd_is_socket(fd)) {
// //internal_error(true, "fd %d is not a socket", fd);
// return false;
// }
short int errors = POLLERR | POLLHUP | POLLNVAL;
#ifdef POLLRDHUP
errors |= POLLRDHUP;
#endif
struct pollfd pfd = {
.fd = fd,
.events = POLLOUT | errors,
.revents = 0,
};
if(poll(&pfd, 1, 0) == -1) {
//internal_error(true, "poll() failed");
return false;
}
return ((pfd.revents & errors) || !(pfd.revents & POLLOUT));
}
int sock_setnonblock(int fd) {
int flags;
flags = fcntl(fd, F_GETFL);
flags |= O_NONBLOCK;
int ret = fcntl(fd, F_SETFL, flags);
if(ret < 0)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set O_NONBLOCK on socket %d",
fd);
return ret;
}
int sock_delnonblock(int fd) {
int flags;
flags = fcntl(fd, F_GETFL);
flags &= ~O_NONBLOCK;
int ret = fcntl(fd, F_SETFL, flags);
if(ret < 0)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to remove O_NONBLOCK on socket %d",
fd);
return ret;
}
int sock_setreuse(int fd, int reuse) {
int ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));
if(ret == -1)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set SO_REUSEADDR on socket %d",
fd);
return ret;
}
int sock_setreuse_port(int fd, int reuse) {
int ret;
#ifdef SO_REUSEPORT
ret = setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(reuse));
if(ret == -1 && errno != ENOPROTOOPT)
nd_log(NDLS_DAEMON, NDLP_ERR,
"failed to set SO_REUSEPORT on socket %d",
fd);
#else
ret = -1;
#endif
return ret;
}
int sock_enlarge_in(int fd) {
int ret, bs = LARGE_SOCK_SIZE;
ret = setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &bs, sizeof(bs));
if(ret == -1)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set SO_RCVBUF on socket %d",
fd);
return ret;
}
int sock_enlarge_out(int fd) {
int ret, bs = LARGE_SOCK_SIZE;
ret = setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &bs, sizeof(bs));
if(ret == -1)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set SO_SNDBUF on socket %d",
fd);
return ret;
}
// --------------------------------------------------------------------------------------------------------------------
char *strdup_client_description(int family, const char *protocol, const char *ip, uint16_t port) {
char buffer[100 + 1];
switch(family) {
case AF_INET:
snprintfz(buffer, 100, "%s:%s:%d", protocol, ip, port);
break;
case AF_INET6:
default:
snprintfz(buffer, 100, "%s:[%s]:%d", protocol, ip, port);
break;
case AF_UNIX:
snprintfz(buffer, 100, "%s:%s", protocol, ip);
break;
}
return strdupz(buffer);
}
// --------------------------------------------------------------------------------------------------------------------
// listening sockets
int create_listen_socket_unix(const char *path, int listen_backlog) {
int sock;
sock = socket(AF_UNIX, SOCK_STREAM, 0);
if(sock < 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: UNIX socket() on path '%s' failed.",
path);
return -1;
}
sock_setnonblock(sock);
sock_enlarge_in(sock);
struct sockaddr_un name;
memset(&name, 0, sizeof(struct sockaddr_un));
name.sun_family = AF_UNIX;
strncpy(name.sun_path, path, sizeof(name.sun_path)-1);
errno = 0;
if (unlink(path) == -1 && errno != ENOENT)
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: failed to remove existing (probably obsolete or left-over) file on UNIX socket path '%s'.",
path);
if(bind (sock, (struct sockaddr *) &name, sizeof (name)) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: UNIX bind() on path '%s' failed.",
path);
return -1;
}
// we have to chmod this to 0777 so that the client will be able
// to read from and write to this socket.
if(chmod(path, 0777) == -1)
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: failed to chmod() socket file '%s'.",
path);
if(listen(sock, listen_backlog) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: UNIX listen() on path '%s' failed.",
path);
return -1;
}
return sock;
}
int create_listen_socket4(int socktype, const char *ip, uint16_t port, int listen_backlog) {
int sock;
sock = socket(AF_INET, socktype, 0);
if(sock < 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv4 socket() on ip '%s' port %d, socktype %d failed.",
ip, port, socktype);
return -1;
}
sock_setreuse(sock, 1);
sock_setreuse_port(sock, 0);
sock_setnonblock(sock);
sock_enlarge_in(sock);
struct sockaddr_in name;
memset(&name, 0, sizeof(struct sockaddr_in));
name.sin_family = AF_INET;
name.sin_port = htons (port);
int ret = inet_pton(AF_INET, ip, (void *)&name.sin_addr.s_addr);
if(ret != 1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Failed to convert IP '%s' to a valid IPv4 address.",
ip);
close(sock);
return -1;
}
if(bind (sock, (struct sockaddr *) &name, sizeof (name)) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv4 bind() on ip '%s' port %d, socktype %d failed.",
ip, port, socktype);
return -1;
}
if(socktype == SOCK_STREAM && listen(sock, listen_backlog) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv4 listen() on ip '%s' port %d, socktype %d failed.",
ip, port, socktype);
return -1;
}
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"LISTENER: Listening on IPv4 ip '%s' port %d, socktype %d",
ip, port, socktype);
return sock;
}
int create_listen_socket6(int socktype, uint32_t scope_id, const char *ip, int port, int listen_backlog) {
int sock;
int ipv6only = 1;
sock = socket(AF_INET6, socktype, 0);
if (sock < 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv6 socket() on ip '%s' port %d, socktype %d, failed.",
ip, port, socktype);
return -1;
}
sock_setreuse(sock, 1);
sock_setreuse_port(sock, 0);
sock_setnonblock(sock);
sock_enlarge_in(sock);
/* IPv6 only */
if(setsockopt(sock, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&ipv6only, sizeof(ipv6only)) != 0)
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Cannot set IPV6_V6ONLY on ip '%s' port %d, socktype %d.",
ip, port, socktype);
struct sockaddr_in6 name;
memset(&name, 0, sizeof(struct sockaddr_in6));
name.sin6_family = AF_INET6;
name.sin6_port = htons ((uint16_t) port);
name.sin6_scope_id = scope_id;
int ret = inet_pton(AF_INET6, ip, (void *)&name.sin6_addr.s6_addr);
if(ret != 1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Failed to convert IP '%s' to a valid IPv6 address.",
ip);
close(sock);
return -1;
}
name.sin6_scope_id = scope_id;
if (bind (sock, (struct sockaddr *) &name, sizeof (name)) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv6 bind() on ip '%s' port %d, socktype %d failed.",
ip, port, socktype);
return -1;
}
if (socktype == SOCK_STREAM && listen(sock, listen_backlog) < 0) {
close(sock);
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: IPv6 listen() on ip '%s' port %d, socktype %d failed.",
ip, port, socktype);
return -1;
}
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"LISTENER: Listening on IPv6 ip '%s' port %d, socktype %d",
ip, port, socktype);
return sock;
}
static inline int listen_sockets_add(LISTEN_SOCKETS *sockets, int fd, int family, int socktype, const char *protocol, const char *ip, uint16_t port, int acl_flags) {
if(sockets->opened >= MAX_LISTEN_FDS) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Too many listening sockets. Failed to add listening %s socket at ip '%s' port %d, protocol %s, socktype %d",
protocol, ip, port, protocol, socktype);
close(fd);
return -1;
}
sockets->fds[sockets->opened] = fd;
sockets->fds_types[sockets->opened] = socktype;
sockets->fds_families[sockets->opened] = family;
sockets->fds_names[sockets->opened] = strdup_client_description(family, protocol, ip, port);
sockets->fds_acl_flags[sockets->opened] = acl_flags;
sockets->opened++;
return 0;
}
int listen_sockets_check_is_member(LISTEN_SOCKETS *sockets, int fd) {
size_t i;
for(i = 0; i < sockets->opened ;i++)
if(sockets->fds[i] == fd) return 1;
return 0;
}
static inline void listen_sockets_init(LISTEN_SOCKETS *sockets) {
size_t i;
for(i = 0; i < MAX_LISTEN_FDS ;i++) {
sockets->fds[i] = -1;
sockets->fds_names[i] = NULL;
sockets->fds_types[i] = -1;
}
sockets->opened = 0;
sockets->failed = 0;
}
void listen_sockets_close(LISTEN_SOCKETS *sockets) {
size_t i;
for(i = 0; i < sockets->opened ;i++) {
close(sockets->fds[i]);
sockets->fds[i] = -1;
freez(sockets->fds_names[i]);
sockets->fds_names[i] = NULL;
sockets->fds_types[i] = -1;
}
sockets->opened = 0;
sockets->failed = 0;
}
/*
* SSL ACL
*
* Search the SSL acl and apply it case it is set.
*
* @param acl is the acl given by the user.
*/
WEB_CLIENT_ACL socket_ssl_acl(char *acl) {
char *ssl = strchr(acl,'^');
if(ssl) {
//Due the format of the SSL command it is always the last command,
//we finish it here to avoid problems with the ACLs
*ssl = '\0';
#ifdef ENABLE_HTTPS
ssl++;
if (!strncmp("SSL=",ssl,4)) {
ssl += 4;
if (!strcmp(ssl,"optional")) {
return WEB_CLIENT_ACL_SSL_OPTIONAL;
}
else if (!strcmp(ssl,"force")) {
return WEB_CLIENT_ACL_SSL_FORCE;
}
}
#endif
}
return WEB_CLIENT_ACL_NONE;
}
WEB_CLIENT_ACL read_acl(char *st) {
WEB_CLIENT_ACL ret = socket_ssl_acl(st);
if (!strcmp(st,"dashboard")) ret |= WEB_CLIENT_ACL_DASHBOARD;
if (!strcmp(st,"registry")) ret |= WEB_CLIENT_ACL_REGISTRY;
if (!strcmp(st,"badges")) ret |= WEB_CLIENT_ACL_BADGE;
if (!strcmp(st,"management")) ret |= WEB_CLIENT_ACL_MGMT;
if (!strcmp(st,"streaming")) ret |= WEB_CLIENT_ACL_STREAMING;
if (!strcmp(st,"netdata.conf")) ret |= WEB_CLIENT_ACL_NETDATACONF;
return ret;
}
static inline int bind_to_this(LISTEN_SOCKETS *sockets, const char *definition, uint16_t default_port, int listen_backlog) {
int added = 0;
WEB_CLIENT_ACL acl_flags = WEB_CLIENT_ACL_NONE;
struct addrinfo hints;
struct addrinfo *result = NULL, *rp = NULL;
char buffer[strlen(definition) + 1];
strcpy(buffer, definition);
char buffer2[10 + 1];
snprintfz(buffer2, 10, "%d", default_port);
char *ip = buffer, *port = buffer2, *interface = "", *portconfig;;
int protocol = IPPROTO_TCP, socktype = SOCK_STREAM;
const char *protocol_str = "tcp";
if(strncmp(ip, "tcp:", 4) == 0) {
ip += 4;
protocol = IPPROTO_TCP;
socktype = SOCK_STREAM;
protocol_str = "tcp";
}
else if(strncmp(ip, "udp:", 4) == 0) {
ip += 4;
protocol = IPPROTO_UDP;
socktype = SOCK_DGRAM;
protocol_str = "udp";
}
else if(strncmp(ip, "unix:", 5) == 0) {
char *path = ip + 5;
socktype = SOCK_STREAM;
protocol_str = "unix";
int fd = create_listen_socket_unix(path, listen_backlog);
if (fd == -1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Cannot create unix socket '%s'",
path);
sockets->failed++;
} else {
acl_flags = WEB_CLIENT_ACL_DASHBOARD | WEB_CLIENT_ACL_REGISTRY | WEB_CLIENT_ACL_BADGE | WEB_CLIENT_ACL_MGMT | WEB_CLIENT_ACL_NETDATACONF | WEB_CLIENT_ACL_STREAMING | WEB_CLIENT_ACL_SSL_DEFAULT;
listen_sockets_add(sockets, fd, AF_UNIX, socktype, protocol_str, path, 0, acl_flags);
added++;
}
return added;
}
char *e = ip;
if(*e == '[') {
e = ++ip;
while(*e && *e != ']') e++;
if(*e == ']') {
*e = '\0';
e++;
}
}
else {
while(*e && *e != ':' && *e != '%' && *e != '=') e++;
}
if(*e == '%') {
*e = '\0';
e++;
interface = e;
while(*e && *e != ':' && *e != '=') e++;
}
if(*e == ':') {
port = e + 1;
*e = '\0';
e++;
while(*e && *e != '=') e++;
}
if(*e == '=') {
*e='\0';
e++;
portconfig = e;
while (*e != '\0') {
if (*e == '|') {
*e = '\0';
acl_flags |= read_acl(portconfig);
e++;
portconfig = e;
continue;
}
e++;
}
acl_flags |= read_acl(portconfig);
} else {
acl_flags = WEB_CLIENT_ACL_DASHBOARD | WEB_CLIENT_ACL_REGISTRY | WEB_CLIENT_ACL_BADGE | WEB_CLIENT_ACL_MGMT | WEB_CLIENT_ACL_NETDATACONF | WEB_CLIENT_ACL_STREAMING | WEB_CLIENT_ACL_SSL_DEFAULT;
}
//Case the user does not set the option SSL in the "bind to", but he has
//the certificates, I must redirect, so I am assuming here the default option
if(!(acl_flags & WEB_CLIENT_ACL_SSL_OPTIONAL) && !(acl_flags & WEB_CLIENT_ACL_SSL_FORCE)) {
acl_flags |= WEB_CLIENT_ACL_SSL_DEFAULT;
}
uint32_t scope_id = 0;
if(*interface) {
scope_id = if_nametoindex(interface);
if(!scope_id)
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Cannot find a network interface named '%s'. "
"Continuing with limiting the network interface",
interface);
}
if(!*ip || *ip == '*' || !strcmp(ip, "any") || !strcmp(ip, "all"))
ip = NULL;
if(!*port)
port = buffer2;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = socktype;
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */
hints.ai_protocol = protocol;
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;
int r = getaddrinfo(ip, port, &hints, &result);
if (r != 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: getaddrinfo('%s', '%s'): %s\n",
ip, port, gai_strerror(r));
return -1;
}
for (rp = result; rp != NULL; rp = rp->ai_next) {
int fd = -1;
int family;
char rip[INET_ADDRSTRLEN + INET6_ADDRSTRLEN] = "INVALID";
uint16_t rport = default_port;
family = rp->ai_addr->sa_family;
switch (family) {
case AF_INET: {
struct sockaddr_in *sin = (struct sockaddr_in *) rp->ai_addr;
inet_ntop(AF_INET, &sin->sin_addr, rip, INET_ADDRSTRLEN);
rport = ntohs(sin->sin_port);
fd = create_listen_socket4(socktype, rip, rport, listen_backlog);
break;
}
case AF_INET6: {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) rp->ai_addr;
inet_ntop(AF_INET6, &sin6->sin6_addr, rip, INET6_ADDRSTRLEN);
rport = ntohs(sin6->sin6_port);
fd = create_listen_socket6(socktype, scope_id, rip, rport, listen_backlog);
break;
}
default:
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"LISTENER: Unknown socket family %d",
family);
break;
}
if (fd == -1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Cannot bind to ip '%s', port %d",
rip, rport);
sockets->failed++;
}
else {
listen_sockets_add(sockets, fd, family, socktype, protocol_str, rip, rport, acl_flags);
added++;
}
}
freeaddrinfo(result);
return added;
}
int listen_sockets_setup(LISTEN_SOCKETS *sockets) {
listen_sockets_init(sockets);
sockets->backlog = (int) appconfig_get_number(sockets->config, sockets->config_section, "listen backlog", sockets->backlog);
long long int old_port = sockets->default_port;
long long int new_port = appconfig_get_number(sockets->config, sockets->config_section, "default port", sockets->default_port);
if(new_port < 1 || new_port > 65535) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Invalid listen port %lld given. Defaulting to %lld.",
new_port, old_port);
sockets->default_port = (uint16_t) appconfig_set_number(sockets->config, sockets->config_section, "default port", old_port);
}
else sockets->default_port = (uint16_t)new_port;
char *s = appconfig_get(sockets->config, sockets->config_section, "bind to", sockets->default_bind_to);
while(*s) {
char *e = s;
// skip separators, moving both s(tart) and e(nd)
while(isspace(*e) || *e == ',') s = ++e;
// move e(nd) to the first separator
while(*e && !isspace(*e) && *e != ',') e++;
// is there anything?
if(!*s || s == e) break;
char buf[e - s + 1];
strncpyz(buf, s, e - s);
bind_to_this(sockets, buf, sockets->default_port, sockets->backlog);
s = e;
}
if(sockets->failed) {
size_t i;
for(i = 0; i < sockets->opened ;i++)
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"LISTENER: Listen socket %s opened successfully.",
sockets->fds_names[i]);
}
return (int)sockets->opened;
}
// --------------------------------------------------------------------------------------------------------------------
// connect to another host/port
// connect_to_this_unix()
// path the path of the unix socket
// timeout the timeout for establishing a connection
static inline int connect_to_unix(const char *path, struct timeval *timeout) {
int fd = socket(AF_UNIX, SOCK_STREAM, 0);
if(fd == -1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to create UNIX socket() for '%s'",
path);
return -1;
}
if(timeout) {
if(setsockopt(fd, SOL_SOCKET, SO_SNDTIMEO, (char *) timeout, sizeof(struct timeval)) < 0)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set timeout on UNIX socket '%s'",
path);
}
struct sockaddr_un addr;
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, path, sizeof(addr.sun_path)-1);
if (connect(fd, (struct sockaddr*)&addr, sizeof(addr)) == -1) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Cannot connect to UNIX socket on path '%s'.",
path);
close(fd);
return -1;
}
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"Connected to UNIX socket on path '%s'.",
path);
return fd;
}
// connect_to_this_ip46()
// protocol IPPROTO_TCP, IPPROTO_UDP
// socktype SOCK_STREAM, SOCK_DGRAM
// host the destination hostname or IP address (IPv4 or IPv6) to connect to
// if it resolves to many IPs, all are tried (IPv4 and IPv6)
// scope_id the if_index id of the interface to use for connecting (0 = any)
// (used only under IPv6)
// service the service name or port to connect to
// timeout the timeout for establishing a connection
int connect_to_this_ip46(int protocol, int socktype, const char *host, uint32_t scope_id, const char *service, struct timeval *timeout) {
struct addrinfo hints;
struct addrinfo *ai_head = NULL, *ai = NULL;
memset(&hints, 0, sizeof(hints));
hints.ai_family = PF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = socktype;
hints.ai_protocol = protocol;
int ai_err = getaddrinfo(host, service, &hints, &ai_head);
if (ai_err != 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Cannot resolve host '%s', port '%s': %s",
host, service, gai_strerror(ai_err));
return -1;
}
char hostBfr[NI_MAXHOST + 1];
char servBfr[NI_MAXSERV + 1];
ND_LOG_STACK lgs[] = {
ND_LOG_FIELD_TXT(NDF_DST_IP, hostBfr),
ND_LOG_FIELD_TXT(NDF_DST_PORT, servBfr),
ND_LOG_FIELD_END(),
};
ND_LOG_STACK_PUSH(lgs);
int fd = -1;
for (ai = ai_head; ai != NULL && fd == -1; ai = ai->ai_next) {
if (ai->ai_family == PF_INET6) {
struct sockaddr_in6 *pSadrIn6 = (struct sockaddr_in6 *) ai->ai_addr;
if(pSadrIn6->sin6_scope_id == 0) {
pSadrIn6->sin6_scope_id = scope_id;
}
}
getnameinfo(ai->ai_addr,
ai->ai_addrlen,
hostBfr,
sizeof(hostBfr),
servBfr,
sizeof(servBfr),
NI_NUMERICHOST | NI_NUMERICSERV);
switch (ai->ai_addr->sa_family) {
case PF_INET: {
struct sockaddr_in *pSadrIn = (struct sockaddr_in *)ai->ai_addr;
(void)pSadrIn;
break;
}
case PF_INET6: {
struct sockaddr_in6 *pSadrIn6 = (struct sockaddr_in6 *) ai->ai_addr;
(void)pSadrIn6;
break;
}
default: {
// Unknown protocol family
continue;
}
}
fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if(fd != -1) {
if(timeout) {
if(setsockopt(fd, SOL_SOCKET, SO_SNDTIMEO, (char *) timeout, sizeof(struct timeval)) < 0)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to set timeout on the socket to ip '%s' port '%s'",
hostBfr, servBfr);
}
errno = 0;
if(connect(fd, ai->ai_addr, ai->ai_addrlen) < 0) {
if(errno == EALREADY || errno == EINPROGRESS) {
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"Waiting for connection to ip %s port %s to be established",
hostBfr, servBfr);
// Convert 'struct timeval' to milliseconds for poll():
int timeout_milliseconds = timeout->tv_sec * 1000 + timeout->tv_usec / 1000;
struct pollfd fds[1];
fds[0].fd = fd;
fds[0].events = POLLOUT; // We are looking for the ability to write to the socket
int ret = poll(fds, 1, timeout_milliseconds);
if (ret > 0) {
// poll() completed normally. We can check the revents to see what happened
if (fds[0].revents & POLLOUT) {
// connect() completed successfully, socket is writable.
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"connect() to ip %s port %s completed successfully",
hostBfr, servBfr);
}
else {
// This means that the socket is in error. We will close it and set fd to -1
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to connect to '%s', port '%s'.",
hostBfr, servBfr);
close(fd);
fd = -1;
}
}
else if (ret == 0) {
// poll() timed out, the connection is not established within the specified timeout.
errno = 0;
nd_log(NDLS_DAEMON, NDLP_ERR,
"Timed out while connecting to '%s', port '%s'.",
hostBfr, servBfr);
close(fd);
fd = -1;
}
else { // ret < 0
// poll() returned an error.
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to connect to '%s', port '%s'. poll() returned %d",
hostBfr, servBfr, ret);
close(fd);
fd = -1;
}
}
else {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to connect to '%s', port '%s'",
hostBfr, servBfr);
close(fd);
fd = -1;
}
}
}
else
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to socket() to '%s', port '%s'",
hostBfr, servBfr);
}
freeaddrinfo(ai_head);
return fd;
}
// connect_to_this()
//
// definition format:
//
// [PROTOCOL:]IP[%INTERFACE][:PORT]
//
// PROTOCOL = tcp or udp
// IP = IPv4 or IPv6 IP or hostname, optionally enclosed in [] (required for IPv6)
// INTERFACE = for IPv6 only, the network interface to use
// PORT = port number or service name
int connect_to_this(const char *definition, int default_port, struct timeval *timeout) {
char buffer[strlen(definition) + 1];
strcpy(buffer, definition);
char default_service[10 + 1];
snprintfz(default_service, 10, "%d", default_port);
char *host = buffer, *service = default_service, *interface = "";
int protocol = IPPROTO_TCP, socktype = SOCK_STREAM;
uint32_t scope_id = 0;
if(strncmp(host, "tcp:", 4) == 0) {
host += 4;
protocol = IPPROTO_TCP;
socktype = SOCK_STREAM;
}
else if(strncmp(host, "udp:", 4) == 0) {
host += 4;
protocol = IPPROTO_UDP;
socktype = SOCK_DGRAM;
}
else if(strncmp(host, "unix:", 5) == 0) {
char *path = host + 5;
return connect_to_unix(path, timeout);
}
else if(*host == '/') {
char *path = host;
return connect_to_unix(path, timeout);
}
char *e = host;
if(*e == '[') {
e = ++host;
while(*e && *e != ']') e++;
if(*e == ']') {
*e = '\0';
e++;
}
}
else {
while(*e && *e != ':' && *e != '%') e++;
}
if(*e == '%') {
*e = '\0';
e++;
interface = e;
while(*e && *e != ':') e++;
}
if(*e == ':') {
*e = '\0';
e++;
service = e;
}
if(!*host) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Definition '%s' does not specify a host.",
definition);
return -1;
}
if(*interface) {
scope_id = if_nametoindex(interface);
if(!scope_id)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Cannot find a network interface named '%s'. Continuing with limiting the network interface",
interface);
}
if(!*service)
service = default_service;
return connect_to_this_ip46(protocol, socktype, host, scope_id, service, timeout);
}
void foreach_entry_in_connection_string(const char *destination, bool (*callback)(char *entry, void *data), void *data) {
const char *s = destination;
while(*s) {
const char *e = s;
// skip separators, moving both s(tart) and e(nd)
while(isspace(*e) || *e == ',') s = ++e;
// move e(nd) to the first separator
while(*e && !isspace(*e) && *e != ',') e++;
// is there anything?
if(!*s || s == e) break;
char buf[e - s + 1];
strncpyz(buf, s, e - s);
if(callback(buf, data)) break;
s = e;
}
}
struct connect_to_one_of_data {
int default_port;
struct timeval *timeout;
size_t *reconnects_counter;
char *connected_to;
size_t connected_to_size;
int sock;
};
static bool connect_to_one_of_callback(char *entry, void *data) {
struct connect_to_one_of_data *t = data;
if(t->reconnects_counter)
t->reconnects_counter++;
t->sock = connect_to_this(entry, t->default_port, t->timeout);
if(t->sock != -1) {
if(t->connected_to && t->connected_to_size) {
strncpyz(t->connected_to, entry, t->connected_to_size);
t->connected_to[t->connected_to_size - 1] = '\0';
}
return true;
}
return false;
}
int connect_to_one_of(const char *destination, int default_port, struct timeval *timeout, size_t *reconnects_counter, char *connected_to, size_t connected_to_size) {
struct connect_to_one_of_data t = {
.default_port = default_port,
.timeout = timeout,
.reconnects_counter = reconnects_counter,
.connected_to = connected_to,
.connected_to_size = connected_to_size,
.sock = -1,
};
foreach_entry_in_connection_string(destination, connect_to_one_of_callback, &t);
return t.sock;
}
static bool connect_to_one_of_urls_callback(char *entry, void *data) {
char *s = strchr(entry, '/');
if(s) *s = '\0';
return connect_to_one_of_callback(entry, data);
}
int connect_to_one_of_urls(const char *destination, int default_port, struct timeval *timeout, size_t *reconnects_counter, char *connected_to, size_t connected_to_size) {
struct connect_to_one_of_data t = {
.default_port = default_port,
.timeout = timeout,
.reconnects_counter = reconnects_counter,
.connected_to = connected_to,
.connected_to_size = connected_to_size,
.sock = -1,
};
foreach_entry_in_connection_string(destination, connect_to_one_of_urls_callback, &t);
return t.sock;
}
// --------------------------------------------------------------------------------------------------------------------
// helpers to send/receive data in one call, in blocking mode, with a timeout
#ifdef ENABLE_HTTPS
ssize_t recv_timeout(NETDATA_SSL *ssl,int sockfd, void *buf, size_t len, int flags, int timeout) {
#else
ssize_t recv_timeout(int sockfd, void *buf, size_t len, int flags, int timeout) {
#endif
for(;;) {
struct pollfd fd = {
.fd = sockfd,
.events = POLLIN,
.revents = 0
};
errno = 0;
int retval = poll(&fd, 1, timeout * 1000);
if(retval == -1) {
// failed
if(errno == EINTR || errno == EAGAIN)
continue;
return -1;
}
if(!retval) {
// timeout
return 0;
}
if(fd.revents & POLLIN)
break;
}
#ifdef ENABLE_HTTPS
if (SSL_connection(ssl)) {
return netdata_ssl_read(ssl, buf, len);
}
#endif
return recv(sockfd, buf, len, flags);
}
#ifdef ENABLE_HTTPS
ssize_t send_timeout(NETDATA_SSL *ssl,int sockfd, void *buf, size_t len, int flags, int timeout) {
#else
ssize_t send_timeout(int sockfd, void *buf, size_t len, int flags, int timeout) {
#endif
for(;;) {
struct pollfd fd = {
.fd = sockfd,
.events = POLLOUT,
.revents = 0
};
errno = 0;
int retval = poll(&fd, 1, timeout * 1000);
if(retval == -1) {
// failed
if(errno == EINTR || errno == EAGAIN)
continue;
return -1;
}
if(!retval) {
// timeout
return 0;
}
if(fd.revents & POLLOUT) break;
}
#ifdef ENABLE_HTTPS
if(ssl->conn) {
if (SSL_connection(ssl)) {
return netdata_ssl_write(ssl, buf, len);
}
else {
nd_log(NDLS_DAEMON, NDLP_ERR,
"cannot write to SSL connection - connection is not ready.");
return -1;
}
}
#endif
return send(sockfd, buf, len, flags);
}
// --------------------------------------------------------------------------------------------------------------------
// accept4() replacement for systems that do not have one
#ifndef HAVE_ACCEPT4
int accept4(int sock, struct sockaddr *addr, socklen_t *addrlen, int flags) {
int fd = accept(sock, addr, addrlen);
int newflags = 0;
if (fd < 0) return fd;
if (flags & SOCK_NONBLOCK) {
newflags |= O_NONBLOCK;
flags &= ~SOCK_NONBLOCK;
}
#ifdef SOCK_CLOEXEC
#ifdef O_CLOEXEC
if (flags & SOCK_CLOEXEC) {
newflags |= O_CLOEXEC;
flags &= ~SOCK_CLOEXEC;
}
#endif
#endif
if (flags) {
close(fd);
errno = EINVAL;
return -1;
}
if (fcntl(fd, F_SETFL, newflags) < 0) {
int saved_errno = errno;
close(fd);
errno = saved_errno;
return -1;
}
return fd;
}
#endif
/*
* ---------------------------------------------------------------------------------------------------------------------
* connection_allowed() - if there is an access list then check the connection matches a pattern.
* Numeric patterns are checked against the IP address first, only if they
* do not match is the hostname resolved (reverse-DNS) and checked. If the
* hostname matches then we perform forward DNS resolution to check the IP
* is really associated with the DNS record. This call is repeatable: the
* web server may check more refined matches against the connection. Will
* update the client_host if uninitialized - ensure the hostsize is the number
* of *writable* bytes (i.e. be aware of the strdup used to compact the pollinfo).
*/
int connection_allowed(int fd, char *client_ip, char *client_host, size_t hostsize, SIMPLE_PATTERN *access_list,
const char *patname, int allow_dns)
{
if (!access_list)
return 1;
if (simple_pattern_matches(access_list, client_ip))
return 1;
// If the hostname is unresolved (and needed) then attempt the DNS lookups.
//if (client_host[0]==0 && simple_pattern_is_potential_name(access_list))
if (client_host[0]==0 && allow_dns)
{
struct sockaddr_storage sadr;
socklen_t addrlen = sizeof(sadr);
int err = getpeername(fd, (struct sockaddr*)&sadr, &addrlen);
if (err != 0 ||
(err = getnameinfo((struct sockaddr *)&sadr, addrlen, client_host, (socklen_t)hostsize,
NULL, 0, NI_NAMEREQD)) != 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"Incoming %s on '%s' does not match a numeric pattern, and host could not be resolved (err=%s)",
patname, client_ip, gai_strerror(err));
if (hostsize >= 8)
strcpy(client_host,"UNKNOWN");
return 0;
}
struct addrinfo *addr_infos = NULL;
if (getaddrinfo(client_host, NULL, NULL, &addr_infos) !=0 ) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: cannot validate hostname '%s' from '%s' by resolving it",
client_host, client_ip);
if (hostsize >= 8)
strcpy(client_host,"UNKNOWN");
return 0;
}
struct addrinfo *scan = addr_infos;
int validated = 0;
while (scan) {
char address[INET6_ADDRSTRLEN];
address[0] = 0;
switch (scan->ai_addr->sa_family) {
case AF_INET:
inet_ntop(AF_INET, &((struct sockaddr_in*)(scan->ai_addr))->sin_addr, address, INET6_ADDRSTRLEN);
break;
case AF_INET6:
inet_ntop(AF_INET6, &((struct sockaddr_in6*)(scan->ai_addr))->sin6_addr, address, INET6_ADDRSTRLEN);
break;
}
if (!strcmp(client_ip, address)) {
validated = 1;
break;
}
scan = scan->ai_next;
}
if (!validated) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: Cannot validate '%s' as ip of '%s', not listed in DNS",
client_ip, client_host);
if (hostsize >= 8)
strcpy(client_host,"UNKNOWN");
}
if (addr_infos!=NULL)
freeaddrinfo(addr_infos);
}
if (!simple_pattern_matches(access_list, client_host))
return 0;
return 1;
}
// --------------------------------------------------------------------------------------------------------------------
// accept_socket() - accept a socket and store client IP and port
int accept_socket(int fd, int flags, char *client_ip, size_t ipsize, char *client_port, size_t portsize,
char *client_host, size_t hostsize, SIMPLE_PATTERN *access_list, int allow_dns) {
struct sockaddr_storage sadr;
socklen_t addrlen = sizeof(sadr);
int nfd = accept4(fd, (struct sockaddr *)&sadr, &addrlen, flags);
if (likely(nfd >= 0)) {
if (getnameinfo((struct sockaddr *)&sadr, addrlen, client_ip, (socklen_t)ipsize,
client_port, (socklen_t)portsize, NI_NUMERICHOST | NI_NUMERICSERV) != 0) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"LISTENER: cannot getnameinfo() on received client connection.");
strncpyz(client_ip, "UNKNOWN", ipsize);
strncpyz(client_port, "UNKNOWN", portsize);
}
if (!strcmp(client_ip, "127.0.0.1") || !strcmp(client_ip, "::1")) {
strncpyz(client_ip, "localhost", ipsize);
}
#ifdef __FreeBSD__
if(((struct sockaddr *)&sadr)->sa_family == AF_LOCAL)
strncpyz(client_ip, "localhost", ipsize);
#endif
client_ip[ipsize - 1] = '\0';
client_port[portsize - 1] = '\0';
switch (((struct sockaddr *)&sadr)->sa_family) {
case AF_UNIX:
// netdata_log_debug(D_LISTENER, "New UNIX domain web client from %s on socket %d.", client_ip, fd);
// set the port - certain versions of libc return garbage on unix sockets
strncpyz(client_port, "UNIX", portsize);
break;
case AF_INET:
// netdata_log_debug(D_LISTENER, "New IPv4 web client from %s port %s on socket %d.", client_ip, client_port, fd);
break;
case AF_INET6:
if (strncmp(client_ip, "::ffff:", 7) == 0) {
memmove(client_ip, &client_ip[7], strlen(&client_ip[7]) + 1);
// netdata_log_debug(D_LISTENER, "New IPv4 web client from %s port %s on socket %d.", client_ip, client_port, fd);
}
// else
// netdata_log_debug(D_LISTENER, "New IPv6 web client from %s port %s on socket %d.", client_ip, client_port, fd);
break;
default:
// netdata_log_debug(D_LISTENER, "New UNKNOWN web client from %s port %s on socket %d.", client_ip, client_port, fd);
break;
}
if (!connection_allowed(nfd, client_ip, client_host, hostsize, access_list, "connection", allow_dns)) {
errno = 0;
nd_log(NDLS_DAEMON, NDLP_WARNING,
"Permission denied for client '%s', port '%s'",
client_ip, client_port);
close(nfd);
nfd = -1;
errno = EPERM;
}
}
#ifdef HAVE_ACCEPT4
else if (errno == ENOSYS)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Netdata has been compiled with the assumption that the system has the accept4() call, but it is not here. "
"Recompile netdata like this: ./configure --disable-accept4 ...");
#endif
return nfd;
}
// --------------------------------------------------------------------------------------------------------------------
// poll() based listener
// this should be the fastest possible listener for up to 100 sockets
// above 100, an epoll() interface is needed on Linux
#define POLL_FDS_INCREASE_STEP 10
inline POLLINFO *poll_add_fd(POLLJOB *p
, int fd
, int socktype
, WEB_CLIENT_ACL port_acl
, uint32_t flags
, const char *client_ip
, const char *client_port
, const char *client_host
, void *(*add_callback)(POLLINFO * /*pi*/, short int * /*events*/, void * /*data*/)
, void (*del_callback)(POLLINFO * /*pi*/)
, int (*rcv_callback)(POLLINFO * /*pi*/, short int * /*events*/)
, int (*snd_callback)(POLLINFO * /*pi*/, short int * /*events*/)
, void *data
) {
if(unlikely(fd < 0)) return NULL;
//if(p->limit && p->used >= p->limit) {
// nd_log(NDLS_DAEMON, NDLP_WARNING, "Max sockets limit reached (%zu sockets), dropping connection", p->used);
// close(fd);
// return NULL;
//}
if(unlikely(!p->first_free)) {
size_t new_slots = p->slots + POLL_FDS_INCREASE_STEP;
p->fds = reallocz(p->fds, sizeof(struct pollfd) * new_slots);
p->inf = reallocz(p->inf, sizeof(POLLINFO) * new_slots);
// reset all the newly added slots
ssize_t i;
for(i = new_slots - 1; i >= (ssize_t)p->slots ; i--) {
p->fds[i].fd = -1;
p->fds[i].events = 0;
p->fds[i].revents = 0;
p->inf[i].p = p;
p->inf[i].slot = (size_t)i;
p->inf[i].flags = 0;
p->inf[i].socktype = -1;
p->inf[i].port_acl = -1;
p->inf[i].client_ip = NULL;
p->inf[i].client_port = NULL;
p->inf[i].client_host = NULL;
p->inf[i].del_callback = p->del_callback;
p->inf[i].rcv_callback = p->rcv_callback;
p->inf[i].snd_callback = p->snd_callback;
p->inf[i].data = NULL;
// link them so that the first free will be earlier in the array
// (we loop decrementing i)
p->inf[i].next = p->first_free;
p->first_free = &p->inf[i];
}
p->slots = new_slots;
}
POLLINFO *pi = p->first_free;
p->first_free = p->first_free->next;
struct pollfd *pf = &p->fds[pi->slot];
pf->fd = fd;
pf->events = POLLIN;
pf->revents = 0;
pi->fd = fd;
pi->p = p;
pi->socktype = socktype;
pi->port_acl = port_acl;
pi->flags = flags;
pi->next = NULL;
pi->client_ip = strdupz(client_ip);
pi->client_port = strdupz(client_port);
pi->client_host = strdupz(client_host);
pi->del_callback = del_callback;
pi->rcv_callback = rcv_callback;
pi->snd_callback = snd_callback;
pi->connected_t = now_boottime_sec();
pi->last_received_t = 0;
pi->last_sent_t = 0;
pi->last_sent_t = 0;
pi->recv_count = 0;
pi->send_count = 0;
netdata_thread_disable_cancelability();
p->used++;
if(unlikely(pi->slot > p->max))
p->max = pi->slot;
if(pi->flags & POLLINFO_FLAG_CLIENT_SOCKET) {
pi->data = add_callback(pi, &pf->events, data);
}
if(pi->flags & POLLINFO_FLAG_SERVER_SOCKET) {
p->min = pi->slot;
}
netdata_thread_enable_cancelability();
return pi;
}
inline void poll_close_fd(POLLINFO *pi) {
POLLJOB *p = pi->p;
struct pollfd *pf = &p->fds[pi->slot];
if(unlikely(pf->fd == -1)) return;
netdata_thread_disable_cancelability();
if(pi->flags & POLLINFO_FLAG_CLIENT_SOCKET) {
pi->del_callback(pi);
if(likely(!(pi->flags & POLLINFO_FLAG_DONT_CLOSE))) {
if(close(pf->fd) == -1)
nd_log(NDLS_DAEMON, NDLP_ERR,
"Failed to close() poll_events() socket %d",
pf->fd);
}
}
pf->fd = -1;
pf->events = 0;
pf->revents = 0;
pi->fd = -1;
pi->socktype = -1;
pi->flags = 0;
pi->data = NULL;
pi->del_callback = NULL;
pi->rcv_callback = NULL;
pi->snd_callback = NULL;
freez(pi->client_ip);
pi->client_ip = NULL;
freez(pi->client_port);
pi->client_port = NULL;
freez(pi->client_host);
pi->client_host = NULL;
pi->next = p->first_free;
p->first_free = pi;
p->used--;
if(unlikely(p->max == pi->slot)) {
p->max = p->min;
ssize_t i;
for(i = (ssize_t)pi->slot; i > (ssize_t)p->min ;i--) {
if (unlikely(p->fds[i].fd != -1)) {
p->max = (size_t)i;
break;
}
}
}
netdata_thread_enable_cancelability();
}
void *poll_default_add_callback(POLLINFO *pi, short int *events, void *data) {
(void)pi;
(void)events;
(void)data;
return NULL;
}
void poll_default_del_callback(POLLINFO *pi) {
if(pi->data)
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: internal error: del_callback_default() called with data pointer - possible memory leak");
}
int poll_default_rcv_callback(POLLINFO *pi, short int *events) {
*events |= POLLIN;
char buffer[1024 + 1];
ssize_t rc;
do {
rc = recv(pi->fd, buffer, 1024, MSG_DONTWAIT);
if (rc < 0) {
// read failed
if (errno != EWOULDBLOCK && errno != EAGAIN) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: poll_default_rcv_callback(): recv() failed with %zd.",
rc);
return -1;
}
} else if (rc) {
// data received
nd_log(NDLS_DAEMON, NDLP_WARNING,
"POLLFD: internal error: poll_default_rcv_callback() is discarding %zd bytes received on socket %d",
rc, pi->fd);
}
} while (rc != -1);
return 0;
}
int poll_default_snd_callback(POLLINFO *pi, short int *events) {
*events &= ~POLLOUT;
nd_log(NDLS_DAEMON, NDLP_WARNING,
"POLLFD: internal error: poll_default_snd_callback(): nothing to send on socket %d",
pi->fd);
return 0;
}
void poll_default_tmr_callback(void *timer_data) {
(void)timer_data;
}
static void poll_events_cleanup(void *data) {
POLLJOB *p = (POLLJOB *)data;
size_t i;
for(i = 0 ; i <= p->max ; i++) {
POLLINFO *pi = &p->inf[i];
poll_close_fd(pi);
}
freez(p->fds);
freez(p->inf);
}
static int poll_process_error(POLLINFO *pi, struct pollfd *pf, short int revents) {
ND_LOG_STACK lgs[] = {
ND_LOG_FIELD_TXT(NDF_SRC_IP, pi->client_ip),
ND_LOG_FIELD_TXT(NDF_SRC_PORT, pi->client_port),
ND_LOG_FIELD_END(),
};
ND_LOG_STACK_PUSH(lgs);
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"POLLFD: LISTENER: received %s %s %s on socket at slot %zu (fd %d) client '%s' port '%s' expecting %s %s %s, having %s %s %s"
, revents & POLLERR ? "POLLERR" : ""
, revents & POLLHUP ? "POLLHUP" : ""
, revents & POLLNVAL ? "POLLNVAL" : ""
, pi->slot
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, pf->events & POLLIN ? "POLLIN" : "", pf->events & POLLOUT ? "POLLOUT" : "", pf->events & POLLPRI ? "POLLPRI" : ""
, revents & POLLIN ? "POLLIN" : "", revents & POLLOUT ? "POLLOUT" : "", revents & POLLPRI ? "POLLPRI" : ""
);
pf->events = 0;
poll_close_fd(pi);
return 1;
}
static inline int poll_process_send(POLLJOB *p, POLLINFO *pi, struct pollfd *pf, time_t now) {
pi->last_sent_t = now;
pi->send_count++;
pf->events = 0;
// remember the slot, in case we need to close it later
// the callback may manipulate the socket list and our pf and pi pointers may be invalid after that call
size_t slot = pi->slot;
if (unlikely(pi->snd_callback(pi, &pf->events) == -1))
poll_close_fd(&p->inf[slot]);
// IMPORTANT:
// pf and pi may be invalid below this point, they may have been reallocated.
return 1;
}
static inline int poll_process_tcp_read(POLLJOB *p, POLLINFO *pi, struct pollfd *pf, time_t now) {
pi->last_received_t = now;
pi->recv_count++;
pf->events = 0;
// remember the slot, in case we need to close it later
// the callback may manipulate the socket list and our pf and pi pointers may be invalid after that call
size_t slot = pi->slot;
if (pi->rcv_callback(pi, &pf->events) == -1)
poll_close_fd(&p->inf[slot]);
// IMPORTANT:
// pf and pi may be invalid below this point, they may have been reallocated.
return 1;
}
static inline int poll_process_udp_read(POLLINFO *pi, struct pollfd *pf, time_t now __maybe_unused) {
pi->last_received_t = now;
pi->recv_count++;
// TODO: access_list is not applied to UDP
// but checking the access list on every UDP packet will destroy
// performance, especially for statsd.
pf->events = 0;
if(pi->rcv_callback(pi, &pf->events) == -1)
return 0;
// IMPORTANT:
// pf and pi may be invalid below this point, they may have been reallocated.
return 1;
}
static int poll_process_new_tcp_connection(POLLJOB *p, POLLINFO *pi, struct pollfd *pf, time_t now) {
pi->last_received_t = now;
pi->recv_count++;
char client_ip[INET6_ADDRSTRLEN] = "";
char client_port[NI_MAXSERV] = "";
char client_host[NI_MAXHOST] = "";
int nfd = accept_socket(
pf->fd,SOCK_NONBLOCK,
client_ip, INET6_ADDRSTRLEN, client_port,NI_MAXSERV, client_host, NI_MAXHOST,
p->access_list, p->allow_dns
);
if (unlikely(nfd < 0)) {
// accept failed
if(unlikely(errno == EMFILE)) {
nd_log_limit_static_global_var(erl, 10, 1000);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: too many open files - used by this thread %zu, max for this thread %zu",
p->used, p->limit);
}
else if(unlikely(errno != EWOULDBLOCK && errno != EAGAIN))
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: accept() failed.");
}
else {
// accept ok
poll_add_fd(p
, nfd
, SOCK_STREAM
, pi->port_acl
, POLLINFO_FLAG_CLIENT_SOCKET
, client_ip
, client_port
, client_host
, p->add_callback
, p->del_callback
, p->rcv_callback
, p->snd_callback
, NULL
);
// IMPORTANT:
// pf and pi may be invalid below this point, they may have been reallocated.
return 1;
}
return 0;
}
void poll_events(LISTEN_SOCKETS *sockets
, void *(*add_callback)(POLLINFO * /*pi*/, short int * /*events*/, void * /*data*/)
, void (*del_callback)(POLLINFO * /*pi*/)
, int (*rcv_callback)(POLLINFO * /*pi*/, short int * /*events*/)
, int (*snd_callback)(POLLINFO * /*pi*/, short int * /*events*/)
, void (*tmr_callback)(void * /*timer_data*/)
, bool (*check_to_stop_callback)(void)
, SIMPLE_PATTERN *access_list
, int allow_dns
, void *data
, time_t tcp_request_timeout_seconds
, time_t tcp_idle_timeout_seconds
, time_t timer_milliseconds
, void *timer_data
, size_t max_tcp_sockets
) {
if(!sockets || !sockets->opened) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: internal error: no listening sockets are opened");
return;
}
if(timer_milliseconds <= 0) timer_milliseconds = 0;
int retval;
POLLJOB p = {
.slots = 0,
.used = 0,
.max = 0,
.limit = max_tcp_sockets,
.fds = NULL,
.inf = NULL,
.first_free = NULL,
.complete_request_timeout = tcp_request_timeout_seconds,
.idle_timeout = tcp_idle_timeout_seconds,
.checks_every = (tcp_idle_timeout_seconds / 3) + 1,
.access_list = access_list,
.allow_dns = allow_dns,
.timer_milliseconds = timer_milliseconds,
.timer_data = timer_data,
.add_callback = add_callback?add_callback:poll_default_add_callback,
.del_callback = del_callback?del_callback:poll_default_del_callback,
.rcv_callback = rcv_callback?rcv_callback:poll_default_rcv_callback,
.snd_callback = snd_callback?snd_callback:poll_default_snd_callback,
.tmr_callback = tmr_callback?tmr_callback:poll_default_tmr_callback
};
size_t i;
for(i = 0; i < sockets->opened ;i++) {
POLLINFO *pi = poll_add_fd(&p
, sockets->fds[i]
, sockets->fds_types[i]
, sockets->fds_acl_flags[i]
, POLLINFO_FLAG_SERVER_SOCKET
, (sockets->fds_names[i])?sockets->fds_names[i]:"UNKNOWN"
, ""
, ""
, p.add_callback
, p.del_callback
, p.rcv_callback
, p.snd_callback
, NULL
);
pi->data = data;
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"POLLFD: LISTENER: listening on '%s'",
(sockets->fds_names[i])?sockets->fds_names[i]:"UNKNOWN");
}
int listen_sockets_active = 1;
int timeout_ms = 1000; // in milliseconds
time_t last_check = now_boottime_sec();
usec_t timer_usec = timer_milliseconds * USEC_PER_MS;
usec_t now_usec = 0, next_timer_usec = 0, last_timer_usec = 0;
(void)last_timer_usec;
if(unlikely(timer_usec)) {
now_usec = now_boottime_usec();
next_timer_usec = now_usec - (now_usec % timer_usec) + timer_usec;
}
netdata_thread_cleanup_push(poll_events_cleanup, &p);
while(!check_to_stop_callback()) {
if(unlikely(timer_usec)) {
now_usec = now_boottime_usec();
if(unlikely(timer_usec && now_usec >= next_timer_usec)) {
last_timer_usec = now_usec;
p.tmr_callback(p.timer_data);
now_usec = now_boottime_usec();
next_timer_usec = now_usec - (now_usec % timer_usec) + timer_usec;
}
usec_t dt_usec = next_timer_usec - now_usec;
if(dt_usec < 1000 * USEC_PER_MS)
timeout_ms = 1000;
else
timeout_ms = (int)(dt_usec / USEC_PER_MS);
}
// enable or disable the TCP listening sockets, based on the current number of sockets used and the limit set
if((listen_sockets_active && (p.limit && p.used >= p.limit)) || (!listen_sockets_active && (!p.limit || p.used < p.limit))) {
listen_sockets_active = !listen_sockets_active;
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"%s listening sockets (used TCP sockets %zu, max allowed for this worker %zu)",
(listen_sockets_active)?"ENABLING":"DISABLING", p.used, p.limit);
for (i = 0; i <= p.max; i++) {
if(p.inf[i].flags & POLLINFO_FLAG_SERVER_SOCKET && p.inf[i].socktype == SOCK_STREAM) {
p.fds[i].events = (short int) ((listen_sockets_active) ? POLLIN : 0);
}
}
}
retval = poll(p.fds, p.max + 1, timeout_ms);
time_t now = now_boottime_sec();
if(unlikely(retval == -1)) {
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: poll() failed while waiting on %zu sockets.",
p.max + 1);
break;
}
else if(unlikely(!retval)) {
// timeout
;
}
else {
POLLINFO *pi;
struct pollfd *pf;
size_t idx, processed = 0;
short int revents;
// keep fast lookup arrays per function
// to avoid looping through the entire list every time
size_t sends[p.max + 1], sends_max = 0;
size_t reads[p.max + 1], reads_max = 0;
size_t conns[p.max + 1], conns_max = 0;
size_t udprd[p.max + 1], udprd_max = 0;
for (i = 0; i <= p.max; i++) {
pi = &p.inf[i];
pf = &p.fds[i];
revents = pf->revents;
if(unlikely(revents == 0 || pf->fd == -1))
continue;
if (unlikely(revents & (POLLERR|POLLHUP|POLLNVAL))) {
// something is wrong to one of our sockets
pf->revents = 0;
processed += poll_process_error(pi, pf, revents);
}
else if (likely(revents & POLLOUT)) {
// a client is ready to receive data
sends[sends_max++] = i;
}
else if (likely(revents & (POLLIN|POLLPRI))) {
if (pi->flags & POLLINFO_FLAG_CLIENT_SOCKET) {
// a client sent data to us
reads[reads_max++] = i;
}
else if (pi->flags & POLLINFO_FLAG_SERVER_SOCKET) {
// something is coming to our server sockets
if(pi->socktype == SOCK_DGRAM) {
// UDP receive, directly on our listening socket
udprd[udprd_max++] = i;
}
else if(pi->socktype == SOCK_STREAM) {
// new TCP connection
conns[conns_max++] = i;
}
else
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: server slot %zu (fd %d) connection from %s port %s using unhandled socket type %d."
, i
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, pi->socktype
);
}
else
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: client slot %zu (fd %d) data from %s port %s using flags %08X is neither client nor server."
, i
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, pi->flags
);
}
else
nd_log(NDLS_DAEMON, NDLP_ERR,
"POLLFD: LISTENER: socket slot %zu (fd %d) client %s port %s unhandled event id %d."
, i
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, revents
);
}
// process sends
for (idx = 0; idx < sends_max; idx++) {
i = sends[idx];
pi = &p.inf[i];
pf = &p.fds[i];
pf->revents = 0;
processed += poll_process_send(&p, pi, pf, now);
}
// process UDP reads
for (idx = 0; idx < udprd_max; idx++) {
i = udprd[idx];
pi = &p.inf[i];
pf = &p.fds[i];
pf->revents = 0;
processed += poll_process_udp_read(pi, pf, now);
}
// process TCP reads
for (idx = 0; idx < reads_max; idx++) {
i = reads[idx];
pi = &p.inf[i];
pf = &p.fds[i];
pf->revents = 0;
processed += poll_process_tcp_read(&p, pi, pf, now);
}
if(!processed && (!p.limit || p.used < p.limit)) {
// nothing processed above (rcv, snd) and we have room for another TCP connection
// so, accept one TCP connection
for (idx = 0; idx < conns_max; idx++) {
i = conns[idx];
pi = &p.inf[i];
pf = &p.fds[i];
pf->revents = 0;
if (poll_process_new_tcp_connection(&p, pi, pf, now))
break;
}
}
}
if(unlikely(p.checks_every > 0 && now - last_check > p.checks_every)) {
last_check = now;
// cleanup old sockets
for(i = 0; i <= p.max; i++) {
POLLINFO *pi = &p.inf[i];
if(likely(pi->flags & POLLINFO_FLAG_CLIENT_SOCKET)) {
if (unlikely(pi->send_count == 0 && p.complete_request_timeout > 0 && (now - pi->connected_t) >= p.complete_request_timeout)) {
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"POLLFD: LISTENER: client slot %zu (fd %d) from %s port %s has not sent a complete request in %zu seconds - closing it. "
, i
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, (size_t) p.complete_request_timeout
);
poll_close_fd(pi);
}
else if(unlikely(pi->recv_count && p.idle_timeout > 0 && now - ((pi->last_received_t > pi->last_sent_t) ? pi->last_received_t : pi->last_sent_t) >= p.idle_timeout )) {
nd_log(NDLS_DAEMON, NDLP_DEBUG,
"POLLFD: LISTENER: client slot %zu (fd %d) from %s port %s is idle for more than %zu seconds - closing it. "
, i
, pi->fd
, pi->client_ip ? pi->client_ip : "<undefined-ip>"
, pi->client_port ? pi->client_port : "<undefined-port>"
, (size_t) p.idle_timeout
);
poll_close_fd(pi);
}
}
}
}
}
netdata_thread_cleanup_pop(1);
}