mirror of
https://github.com/netdata/netdata.git
synced 2025-05-03 00:40:12 +00:00
1808 lines
73 KiB
C
1808 lines
73 KiB
C
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "query.h"
|
|
#include "web/api/formatters/rrd2json.h"
|
|
#include "rrdr.h"
|
|
|
|
#include "average/average.h"
|
|
#include "countif/countif.h"
|
|
#include "incremental_sum/incremental_sum.h"
|
|
#include "max/max.h"
|
|
#include "median/median.h"
|
|
#include "min/min.h"
|
|
#include "sum/sum.h"
|
|
#include "stddev/stddev.h"
|
|
#include "ses/ses.h"
|
|
#include "des/des.h"
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static struct {
|
|
const char *name;
|
|
uint32_t hash;
|
|
RRDR_GROUPING value;
|
|
|
|
// One time initialization for the module.
|
|
// This is called once, when netdata starts.
|
|
void (*init)(void);
|
|
|
|
// Allocate all required structures for a query.
|
|
// This is called once for each netdata query.
|
|
void (*create)(struct rrdresult *r, const char *options);
|
|
|
|
// Cleanup collected values, but don't destroy the structures.
|
|
// This is called when the query engine switches dimensions,
|
|
// as part of the same query (so same chart, switching metric).
|
|
void (*reset)(struct rrdresult *r);
|
|
|
|
// Free all resources allocated for the query.
|
|
void (*free)(struct rrdresult *r);
|
|
|
|
// Add a single value into the calculation.
|
|
// The module may decide to cache it, or use it in the fly.
|
|
void (*add)(struct rrdresult *r, NETDATA_DOUBLE value);
|
|
|
|
// Generate a single result for the values added so far.
|
|
// More values and points may be requested later.
|
|
// It is up to the module to reset its internal structures
|
|
// when flushing it (so for a few modules it may be better to
|
|
// continue after a flush as if nothing changed, for others a
|
|
// cleanup of the internal structures may be required).
|
|
NETDATA_DOUBLE (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
|
|
|
|
TIER_QUERY_FETCH tier_query_fetch;
|
|
} api_v1_data_groups[] = {
|
|
{.name = "average",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "mean", // alias on 'average'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "incremental_sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_incremental_sum,
|
|
.reset = grouping_reset_incremental_sum,
|
|
.free = grouping_free_incremental_sum,
|
|
.add = grouping_add_incremental_sum,
|
|
.flush = grouping_flush_incremental_sum,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "incremental-sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_incremental_sum,
|
|
.reset = grouping_reset_incremental_sum,
|
|
.free = grouping_free_incremental_sum,
|
|
.add = grouping_add_incremental_sum,
|
|
.flush = grouping_flush_incremental_sum,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "median",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= grouping_create_median,
|
|
.reset = grouping_reset_median,
|
|
.free = grouping_free_median,
|
|
.add = grouping_add_median,
|
|
.flush = grouping_flush_median,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "min",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MIN,
|
|
.init = NULL,
|
|
.create= grouping_create_min,
|
|
.reset = grouping_reset_min,
|
|
.free = grouping_free_min,
|
|
.add = grouping_add_min,
|
|
.flush = grouping_flush_min,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_MIN
|
|
},
|
|
{.name = "max",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MAX,
|
|
.init = NULL,
|
|
.create= grouping_create_max,
|
|
.reset = grouping_reset_max,
|
|
.free = grouping_free_max,
|
|
.add = grouping_add_max,
|
|
.flush = grouping_flush_max,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_MAX
|
|
},
|
|
{.name = "sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SUM,
|
|
.init = NULL,
|
|
.create= grouping_create_sum,
|
|
.reset = grouping_reset_sum,
|
|
.free = grouping_free_sum,
|
|
.add = grouping_add_sum,
|
|
.flush = grouping_flush_sum,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_SUM
|
|
},
|
|
|
|
// standard deviation
|
|
{.name = "stddev",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_STDDEV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_stddev,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "cv", // coefficient variation is calculated by stddev
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev, // not an error, stddev calculates this too
|
|
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
|
|
.free = grouping_free_stddev, // not an error, stddev calculates this too
|
|
.add = grouping_add_stddev, // not an error, stddev calculates this too
|
|
.flush = grouping_flush_coefficient_of_variation,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "rsd", // alias of 'cv'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= grouping_create_stddev, // not an error, stddev calculates this too
|
|
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
|
|
.free = grouping_free_stddev, // not an error, stddev calculates this too
|
|
.add = grouping_add_stddev, // not an error, stddev calculates this too
|
|
.flush = grouping_flush_coefficient_of_variation,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
/*
|
|
{.name = "mean", // same as average, no need to define it again
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MEAN,
|
|
.setup = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_mean,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
*/
|
|
|
|
/*
|
|
{.name = "variance", // meaningless to offer
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_VARIANCE,
|
|
.setup = NULL,
|
|
.create= grouping_create_stddev,
|
|
.reset = grouping_reset_stddev,
|
|
.free = grouping_free_stddev,
|
|
.add = grouping_add_stddev,
|
|
.flush = grouping_flush_variance,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
*/
|
|
|
|
// single exponential smoothing
|
|
{.name = "ses",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = grouping_init_ses,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "ema", // alias for 'ses'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "ewma", // alias for ses
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= grouping_create_ses,
|
|
.reset = grouping_reset_ses,
|
|
.free = grouping_free_ses,
|
|
.add = grouping_add_ses,
|
|
.flush = grouping_flush_ses,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
// double exponential smoothing
|
|
{.name = "des",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_DES,
|
|
.init = grouping_init_des,
|
|
.create= grouping_create_des,
|
|
.reset = grouping_reset_des,
|
|
.free = grouping_free_des,
|
|
.add = grouping_add_des,
|
|
.flush = grouping_flush_des,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
{.name = "countif",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_COUNTIF,
|
|
.init = NULL,
|
|
.create= grouping_create_countif,
|
|
.reset = grouping_reset_countif,
|
|
.free = grouping_free_countif,
|
|
.add = grouping_add_countif,
|
|
.flush = grouping_flush_countif,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
// terminator
|
|
{.name = NULL,
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_UNDEFINED,
|
|
.init = NULL,
|
|
.create= grouping_create_average,
|
|
.reset = grouping_reset_average,
|
|
.free = grouping_free_average,
|
|
.add = grouping_add_average,
|
|
.flush = grouping_flush_average,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
}
|
|
};
|
|
|
|
void web_client_api_v1_init_grouping(void) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
|
|
|
|
if(api_v1_data_groups[i].init)
|
|
api_v1_data_groups[i].init();
|
|
}
|
|
}
|
|
|
|
const char *group_method2string(RRDR_GROUPING group) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
if(api_v1_data_groups[i].value == group) {
|
|
return api_v1_data_groups[i].name;
|
|
}
|
|
}
|
|
|
|
return "unknown-group-method";
|
|
}
|
|
|
|
RRDR_GROUPING web_client_api_request_v1_data_group(const char *name, RRDR_GROUPING def) {
|
|
int i;
|
|
|
|
uint32_t hash = simple_hash(name);
|
|
for(i = 0; api_v1_data_groups[i].name ; i++)
|
|
if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
|
|
return api_v1_data_groups[i].value;
|
|
|
|
return def;
|
|
}
|
|
|
|
const char *web_client_api_request_v1_data_group_to_string(RRDR_GROUPING group) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++)
|
|
if(unlikely(group == api_v1_data_groups[i].value))
|
|
return api_v1_data_groups[i].name;
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
static void rrdr_set_grouping_function(RRDR *r, RRDR_GROUPING group_method) {
|
|
int i, found = 0;
|
|
for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
|
|
if(api_v1_data_groups[i].value == group_method) {
|
|
r->internal.grouping_create = api_v1_data_groups[i].create;
|
|
r->internal.grouping_reset = api_v1_data_groups[i].reset;
|
|
r->internal.grouping_free = api_v1_data_groups[i].free;
|
|
r->internal.grouping_add = api_v1_data_groups[i].add;
|
|
r->internal.grouping_flush = api_v1_data_groups[i].flush;
|
|
r->internal.tier_query_fetch = api_v1_data_groups[i].tier_query_fetch;
|
|
found = 1;
|
|
}
|
|
}
|
|
if(!found) {
|
|
errno = 0;
|
|
internal_error(true, "QUERY: grouping method %u not found. Using 'average'", (unsigned int)group_method);
|
|
r->internal.grouping_create = grouping_create_average;
|
|
r->internal.grouping_reset = grouping_reset_average;
|
|
r->internal.grouping_free = grouping_free_average;
|
|
r->internal.grouping_add = grouping_add_average;
|
|
r->internal.grouping_flush = grouping_flush_average;
|
|
r->internal.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static void rrdr_disable_not_selected_dimensions(RRDR *r, RRDR_OPTIONS options, const char *dims,
|
|
struct context_param *context_param_list)
|
|
{
|
|
RRDDIM *temp_rd = context_param_list ? context_param_list->rd : NULL;
|
|
int should_lock = (!context_param_list || !(context_param_list->flags & CONTEXT_FLAGS_ARCHIVE));
|
|
|
|
if (should_lock)
|
|
rrdset_check_rdlock(r->st);
|
|
|
|
if(unlikely(!dims || !*dims || (dims[0] == '*' && dims[1] == '\0'))) return;
|
|
|
|
int match_ids = 0, match_names = 0;
|
|
|
|
if(unlikely(options & RRDR_OPTION_MATCH_IDS))
|
|
match_ids = 1;
|
|
if(unlikely(options & RRDR_OPTION_MATCH_NAMES))
|
|
match_names = 1;
|
|
|
|
if(likely(!match_ids && !match_names))
|
|
match_ids = match_names = 1;
|
|
|
|
SIMPLE_PATTERN *pattern = simple_pattern_create(dims, ",|\t\r\n\f\v", SIMPLE_PATTERN_EXACT);
|
|
|
|
RRDDIM *d;
|
|
long c, dims_selected = 0, dims_not_hidden_not_zero = 0;
|
|
for(c = 0, d = temp_rd?temp_rd:r->st->dimensions; d ;c++, d = d->next) {
|
|
if( (match_ids && simple_pattern_matches(pattern, d->id))
|
|
|| (match_names && simple_pattern_matches(pattern, d->name))
|
|
) {
|
|
r->od[c] |= RRDR_DIMENSION_SELECTED;
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) r->od[c] &= ~RRDR_DIMENSION_HIDDEN;
|
|
dims_selected++;
|
|
|
|
// since the user needs this dimension
|
|
// make it appear as NONZERO, to return it
|
|
// even if the dimension has only zeros
|
|
// unless option non_zero is set
|
|
if(unlikely(!(options & RRDR_OPTION_NONZERO)))
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
|
|
// count the visible dimensions
|
|
if(likely(r->od[c] & RRDR_DIMENSION_NONZERO))
|
|
dims_not_hidden_not_zero++;
|
|
}
|
|
else {
|
|
r->od[c] |= RRDR_DIMENSION_HIDDEN;
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
|
|
}
|
|
}
|
|
simple_pattern_free(pattern);
|
|
|
|
// check if all dimensions are hidden
|
|
if(unlikely(!dims_not_hidden_not_zero && dims_selected)) {
|
|
// there are a few selected dimensions,
|
|
// but they are all zero
|
|
// enable the selected ones
|
|
// to avoid returning an empty chart
|
|
for(c = 0, d = temp_rd?temp_rd:r->st->dimensions; d ;c++, d = d->next)
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED))
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// helpers to find our way in RRDR
|
|
|
|
static inline RRDR_VALUE_FLAGS *UNUSED_FUNCTION(rrdr_line_options)(RRDR *r, long rrdr_line) {
|
|
return &r->o[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline NETDATA_DOUBLE *UNUSED_FUNCTION(rrdr_line_values)(RRDR *r, long rrdr_line) {
|
|
return &r->v[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline long rrdr_line_init(RRDR *r, time_t t, long rrdr_line) {
|
|
rrdr_line++;
|
|
|
|
internal_error(rrdr_line >= r->n,
|
|
"QUERY: requested to step above RRDR size for chart '%s'",
|
|
r->st->name);
|
|
|
|
internal_error(r->t[rrdr_line] != 0 && r->t[rrdr_line] != t,
|
|
"QUERY: overwriting the timestamp of RRDR line %zu from %zu to %zu, of chart '%s'",
|
|
(size_t)rrdr_line, (size_t)r->t[rrdr_line], (size_t)t, r->st->name);
|
|
|
|
// save the time
|
|
r->t[rrdr_line] = t;
|
|
|
|
return rrdr_line;
|
|
}
|
|
|
|
static inline void rrdr_done(RRDR *r, long rrdr_line) {
|
|
r->rows = rrdr_line + 1;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// tier management
|
|
|
|
static int rrddim_find_best_tier_for_timeframe(RRDDIM *rd, time_t after_wanted, time_t before_wanted, long points_wanted) {
|
|
if(unlikely(storage_tiers < 2))
|
|
return 0;
|
|
|
|
if(unlikely(after_wanted == before_wanted || points_wanted <= 0 || !rd || !rd->rrdset)) {
|
|
|
|
if(!rd)
|
|
internal_error(true, "QUERY: NULL dimension - invalid params to tier calculation");
|
|
else
|
|
internal_error(true, "QUERY: chart '%s' dimension '%s' invalid params to tier calculation",
|
|
(rd->rrdset)?rd->rrdset->name:"unknown", rd->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
//BUFFER *wb = buffer_create(1000);
|
|
//buffer_sprintf(wb, "Best tier for chart '%s', dim '%s', from %ld to %ld (dur %ld, every %d), points %ld",
|
|
// rd->rrdset->name, rd->name, after_wanted, before_wanted, before_wanted - after_wanted, rd->update_every, points_wanted);
|
|
|
|
long weight[storage_tiers];
|
|
|
|
for(int tier = 0; tier < storage_tiers ; tier++) {
|
|
if(unlikely(!rd->tiers[tier])) {
|
|
internal_error(true, "QUERY: tier %d of chart '%s' dimension '%s' not initialized",
|
|
tier, rd->rrdset->name, rd->name);
|
|
// buffer_free(wb);
|
|
return 0;
|
|
}
|
|
|
|
time_t first_t = rd->tiers[tier]->query_ops.oldest_time(rd->tiers[tier]->db_metric_handle);
|
|
time_t last_t = rd->tiers[tier]->query_ops.latest_time(rd->tiers[tier]->db_metric_handle);
|
|
|
|
time_t common_after = MAX(first_t, after_wanted);
|
|
time_t common_before = MIN(last_t, before_wanted);
|
|
|
|
long time_coverage = (common_before - common_after) * 1000 / (before_wanted - after_wanted);
|
|
if(time_coverage < 0) time_coverage = 0;
|
|
|
|
int update_every = (int)rd->tiers[tier]->tier_grouping * (int)rd->update_every;
|
|
if(unlikely(update_every == 0)) {
|
|
internal_error(true, "QUERY: update_every of tier %d for chart '%s' dimension '%s' is zero. tg = %d, ue = %d",
|
|
tier, rd->rrdset->name, rd->name, rd->tiers[tier]->tier_grouping, rd->update_every);
|
|
// buffer_free(wb);
|
|
return 0;
|
|
}
|
|
|
|
long points_available = (before_wanted - after_wanted) / update_every;
|
|
long points_delta = points_available - points_wanted;
|
|
long points_coverage = (points_delta < 0) ? points_available * 1000 / points_wanted: 1000;
|
|
|
|
if(points_available <= 0)
|
|
weight[tier] = -LONG_MAX;
|
|
else
|
|
weight[tier] = points_coverage;
|
|
|
|
// buffer_sprintf(wb, ": tier %d, first %ld, last %ld (dur %ld, tg %d, every %d), points %ld, tcoverage %ld, pcoverage %ld, weight %ld",
|
|
// tier, first_t, last_t, last_t - first_t, rd->tiers[tier]->tier_grouping, update_every,
|
|
// points_available, time_coverage, points_coverage, weight[tier]);
|
|
}
|
|
|
|
int best_tier = 0;
|
|
for(int tier = 1; tier < storage_tiers ; tier++) {
|
|
if(weight[tier] >= weight[best_tier])
|
|
best_tier = tier;
|
|
}
|
|
|
|
if(weight[best_tier] == -LONG_MAX)
|
|
best_tier = 0;
|
|
|
|
//buffer_sprintf(wb, ": final best tier %d", best_tier);
|
|
//internal_error(true, "%s", buffer_tostring(wb));
|
|
//buffer_free(wb);
|
|
|
|
return best_tier;
|
|
}
|
|
|
|
static int rrdset_find_natural_update_every_for_timeframe(RRDSET *st, time_t after_wanted, time_t before_wanted, long points_wanted, RRDR_OPTIONS options, int tier) {
|
|
int ret = st->update_every;
|
|
|
|
if(unlikely(!st->dimensions))
|
|
return ret;
|
|
|
|
rrdset_rdlock(st);
|
|
int best_tier;
|
|
|
|
if(options & RRDR_OPTION_SELECTED_TIER && tier >= 0 && tier < storage_tiers)
|
|
best_tier = tier;
|
|
else
|
|
best_tier = rrddim_find_best_tier_for_timeframe(st->dimensions, after_wanted, before_wanted, points_wanted);
|
|
|
|
if(!st->dimensions->tiers[best_tier]) {
|
|
internal_error(
|
|
true,
|
|
"QUERY: tier %d on chart '%s', is not initialized", best_tier, st->name);
|
|
}
|
|
else {
|
|
ret = (int)st->dimensions->tiers[best_tier]->tier_grouping * (int)st->update_every;
|
|
if(unlikely(!ret)) {
|
|
internal_error(
|
|
true,
|
|
"QUERY: update_every calculated to be zero on chart '%s', tier_grouping %d, update_every %d",
|
|
st->name, st->dimensions->tiers[best_tier]->tier_grouping, st->update_every);
|
|
|
|
ret = st->update_every;
|
|
}
|
|
}
|
|
|
|
rrdset_unlock(st);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// query ops
|
|
|
|
typedef struct query_point {
|
|
time_t end_time;
|
|
time_t start_time;
|
|
NETDATA_DOUBLE value;
|
|
size_t anomaly;
|
|
SN_FLAGS flags;
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
size_t id;
|
|
#endif
|
|
} QUERY_POINT;
|
|
|
|
QUERY_POINT QUERY_POINT_EMPTY = {
|
|
.end_time = 0,
|
|
.start_time = 0,
|
|
.value = NAN,
|
|
.anomaly = 0,
|
|
.flags = SN_EMPTY_SLOT,
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
.id = 0,
|
|
#endif
|
|
};
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
#define query_point_set_id(point, point_id) (point).id = point_id
|
|
#else
|
|
#define query_point_set_id(point, point_id) debug_dummy()
|
|
#endif
|
|
|
|
typedef struct query_plan_entry {
|
|
size_t tier;
|
|
time_t after;
|
|
time_t before;
|
|
} QUERY_PLAN_ENTRY;
|
|
|
|
typedef struct query_plan {
|
|
size_t entries;
|
|
QUERY_PLAN_ENTRY data[RRD_STORAGE_TIERS*2];
|
|
} QUERY_PLAN;
|
|
|
|
typedef struct query_engine_ops {
|
|
// configuration
|
|
RRDR *r;
|
|
RRDDIM *rd;
|
|
time_t view_update_every;
|
|
time_t query_granularity;
|
|
TIER_QUERY_FETCH tier_query_fetch;
|
|
|
|
// query planer
|
|
QUERY_PLAN plan;
|
|
size_t current_plan;
|
|
time_t current_plan_expire_time;
|
|
|
|
// storage queries
|
|
size_t tier;
|
|
struct rrddim_tier *tier_ptr;
|
|
struct rrddim_query_handle handle;
|
|
STORAGE_POINT (*next_metric)(struct rrddim_query_handle *handle);
|
|
int (*is_finished)(struct rrddim_query_handle *handle);
|
|
void (*finalize)(struct rrddim_query_handle *handle);
|
|
|
|
// aggregating points over time
|
|
void (*grouping_add)(struct rrdresult *r, NETDATA_DOUBLE value);
|
|
NETDATA_DOUBLE (*grouping_flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
|
|
size_t group_points_non_zero;
|
|
size_t group_points_added;
|
|
size_t group_anomaly_rate;
|
|
RRDR_VALUE_FLAGS group_value_flags;
|
|
|
|
// statistics
|
|
size_t db_total_points_read;
|
|
size_t db_points_read_per_tier[RRD_STORAGE_TIERS];
|
|
} QUERY_ENGINE_OPS;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// query planer
|
|
|
|
#define query_plan_should_switch_plan(ops, now) ((now) >= (ops).current_plan_expire_time)
|
|
|
|
static void query_planer_activate_plan(QUERY_ENGINE_OPS *ops, size_t plan_id, time_t overwrite_after) {
|
|
if(unlikely(plan_id >= ops->plan.entries))
|
|
plan_id = ops->plan.entries - 1;
|
|
|
|
time_t after = ops->plan.data[plan_id].after;
|
|
time_t before = ops->plan.data[plan_id].before;
|
|
|
|
if(overwrite_after > after && overwrite_after < before)
|
|
after = overwrite_after;
|
|
|
|
ops->tier = ops->plan.data[plan_id].tier;
|
|
ops->tier_ptr = ops->rd->tiers[ops->tier];
|
|
ops->tier_ptr->query_ops.init(ops->tier_ptr->db_metric_handle, &ops->handle, after, before, ops->r->internal.tier_query_fetch);
|
|
ops->next_metric = ops->tier_ptr->query_ops.next_metric;
|
|
ops->is_finished = ops->tier_ptr->query_ops.is_finished;
|
|
ops->finalize = ops->tier_ptr->query_ops.finalize;
|
|
ops->current_plan = plan_id;
|
|
ops->current_plan_expire_time = ops->plan.data[plan_id].before;
|
|
}
|
|
|
|
static void query_planer_next_plan(QUERY_ENGINE_OPS *ops, time_t now, time_t last_point_end_time) {
|
|
internal_error(now < ops->current_plan_expire_time && now < ops->plan.data[ops->current_plan].before,
|
|
"QUERY: switching query plan too early!");
|
|
|
|
time_t next_plan_before_time;
|
|
do {
|
|
ops->current_plan++;
|
|
|
|
if (ops->current_plan >= ops->plan.entries) {
|
|
ops->current_plan = ops->plan.entries - 1;
|
|
return;
|
|
}
|
|
|
|
next_plan_before_time = ops->plan.data[ops->current_plan].before;
|
|
} while(now >= next_plan_before_time || last_point_end_time >= next_plan_before_time);
|
|
|
|
if(ops->finalize) {
|
|
ops->finalize(&ops->handle);
|
|
ops->finalize = NULL;
|
|
}
|
|
|
|
query_planer_activate_plan(ops, ops->current_plan, MIN(now, last_point_end_time));
|
|
|
|
// internal_error(true, "QUERY: switched plan to %zu (all is %zu), previous expiration was %ld, this starts at %ld, now is %ld, last_point_end_time %ld", ops->current_plan, ops->plan.entries, ops->plan.data[ops->current_plan-1].before, ops->plan.data[ops->current_plan].after, now, last_point_end_time);
|
|
}
|
|
|
|
static int compare_query_plan_entries_on_start_time(const void *a, const void *b) {
|
|
QUERY_PLAN_ENTRY *p1 = (QUERY_PLAN_ENTRY *)a;
|
|
QUERY_PLAN_ENTRY *p2 = (QUERY_PLAN_ENTRY *)b;
|
|
return (p1->after < p2->after)?-1:1;
|
|
}
|
|
|
|
static void query_plan(QUERY_ENGINE_OPS *ops, time_t after_wanted, time_t before_wanted, long points_wanted) {
|
|
RRDDIM *rd = ops->rd;
|
|
|
|
//BUFFER *wb = buffer_create(1000);
|
|
//buffer_sprintf(wb, "QUERY PLAN for chart '%s' dimension '%s', from %ld to %ld:", rd->rrdset->name, rd->name, after_wanted, before_wanted);
|
|
|
|
// put our selected tier as the first plan
|
|
size_t selected_tier;
|
|
|
|
if(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER && ops->r->internal.query_tier >= 0 && ops->r->internal.query_tier < storage_tiers) {
|
|
selected_tier = ops->r->internal.query_tier;
|
|
}
|
|
else {
|
|
|
|
selected_tier = rrddim_find_best_tier_for_timeframe(rd, after_wanted, before_wanted, points_wanted);
|
|
|
|
if(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER)
|
|
ops->r->internal.query_options &= ~RRDR_OPTION_SELECTED_TIER;
|
|
}
|
|
|
|
ops->plan.entries = 1;
|
|
ops->plan.data[0].tier = selected_tier;
|
|
ops->plan.data[0].after = rd->tiers[selected_tier]->query_ops.oldest_time(rd->tiers[selected_tier]->db_metric_handle);
|
|
ops->plan.data[0].before = rd->tiers[selected_tier]->query_ops.latest_time(rd->tiers[selected_tier]->db_metric_handle);
|
|
|
|
if(!(ops->r->internal.query_options & RRDR_OPTION_SELECTED_TIER)) {
|
|
// the selected tier
|
|
time_t selected_tier_first_time_t = ops->plan.data[0].after;
|
|
time_t selected_tier_last_time_t = ops->plan.data[0].before;
|
|
|
|
//buffer_sprintf(wb, ": SELECTED tier %zu, from %ld to %ld", selected_tier, ops->plan.data[0].after, ops->plan.data[0].before);
|
|
|
|
// check if our selected tier can start the query
|
|
if (selected_tier_first_time_t > after_wanted) {
|
|
// we need some help from other tiers
|
|
for (int tr = (int)selected_tier + 1; tr < storage_tiers; tr++) {
|
|
// find the first time of this tier
|
|
time_t first_time_t = rd->tiers[tr]->query_ops.oldest_time(rd->tiers[tr]->db_metric_handle);
|
|
|
|
//buffer_sprintf(wb, ": EVAL AFTER tier %d, %ld", tier, first_time_t);
|
|
|
|
// can it help?
|
|
if (first_time_t < selected_tier_first_time_t) {
|
|
// it can help us add detail at the beginning of the query
|
|
QUERY_PLAN_ENTRY t = {
|
|
.tier = tr,
|
|
.after = (first_time_t < after_wanted) ? after_wanted : first_time_t,
|
|
.before = selected_tier_first_time_t};
|
|
ops->plan.data[ops->plan.entries++] = t;
|
|
|
|
// prepare for the tier
|
|
selected_tier_first_time_t = t.after;
|
|
|
|
if (t.after <= after_wanted)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if our selected tier can finish the query
|
|
if (selected_tier_last_time_t < before_wanted) {
|
|
// we need some help from other tiers
|
|
for (int tr = (int)selected_tier - 1; tr >= 0; tr--) {
|
|
// find the last time of this tier
|
|
time_t last_time_t = rd->tiers[tr]->query_ops.latest_time(rd->tiers[tr]->db_metric_handle);
|
|
|
|
//buffer_sprintf(wb, ": EVAL BEFORE tier %d, %ld", tier, last_time_t);
|
|
|
|
// can it help?
|
|
if (last_time_t > selected_tier_last_time_t) {
|
|
// it can help us add detail at the end of the query
|
|
QUERY_PLAN_ENTRY t = {
|
|
.tier = tr,
|
|
.after = selected_tier_last_time_t,
|
|
.before = (last_time_t > before_wanted) ? before_wanted : last_time_t};
|
|
ops->plan.data[ops->plan.entries++] = t;
|
|
|
|
// prepare for the tier
|
|
selected_tier_last_time_t = t.before;
|
|
|
|
if (t.before >= before_wanted)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// sort the query plan
|
|
if(ops->plan.entries > 1)
|
|
qsort(&ops->plan.data, ops->plan.entries, sizeof(QUERY_PLAN_ENTRY), compare_query_plan_entries_on_start_time);
|
|
|
|
// make sure it has the whole timeframe we need
|
|
ops->plan.data[0].after = after_wanted;
|
|
ops->plan.data[ops->plan.entries - 1].before = before_wanted;
|
|
|
|
//buffer_sprintf(wb, ": FINAL STEPS %zu", ops->plan.entries);
|
|
|
|
//for(size_t i = 0; i < ops->plan.entries ;i++)
|
|
// buffer_sprintf(wb, ": STEP %zu = use tier %zu from %ld to %ld", i+1, ops->plan.data[i].tier, ops->plan.data[i].after, ops->plan.data[i].before);
|
|
|
|
//internal_error(true, "%s", buffer_tostring(wb));
|
|
|
|
query_planer_activate_plan(ops, 0, 0);
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// dimension level query engine
|
|
|
|
#define query_interpolate_point(this_point, last_point, now) do { \
|
|
if(likely( \
|
|
/* the point to interpolate is more than 1s wide */ \
|
|
(this_point).end_time - (this_point).start_time > 1 \
|
|
\
|
|
/* the two points are exactly next to each other */ \
|
|
&& (last_point).end_time == (this_point).start_time \
|
|
\
|
|
/* both points are valid numbers */ \
|
|
&& netdata_double_isnumber((this_point).value) \
|
|
&& netdata_double_isnumber((last_point).value) \
|
|
\
|
|
)) { \
|
|
(this_point).value = (last_point).value + ((this_point).value - (last_point).value) * (1.0 - (NETDATA_DOUBLE)((this_point).end_time - (now)) / (NETDATA_DOUBLE)((this_point).end_time - (this_point).start_time)); \
|
|
(this_point).end_time = now; \
|
|
} \
|
|
} while(0)
|
|
|
|
#define query_add_point_to_group(r, point, ops) do { \
|
|
if(likely(netdata_double_isnumber((point).value))) { \
|
|
if(likely((point).value != 0.0)) \
|
|
(ops).group_points_non_zero++; \
|
|
\
|
|
if(unlikely((point).flags & SN_EXISTS_RESET)) \
|
|
(ops).group_value_flags |= RRDR_VALUE_RESET; \
|
|
\
|
|
(ops).grouping_add(r, (point).value); \
|
|
} \
|
|
\
|
|
(ops).group_points_added++; \
|
|
(ops).group_anomaly_rate += (point).anomaly; \
|
|
} while(0)
|
|
|
|
static inline void rrd2rrdr_do_dimension(
|
|
RRDR *r
|
|
, long points_wanted
|
|
, RRDDIM *rd
|
|
, long dim_id_in_rrdr
|
|
, time_t after_wanted
|
|
, time_t before_wanted
|
|
){
|
|
time_t max_date = 0,
|
|
min_date = 0;
|
|
|
|
size_t points_added = 0;
|
|
|
|
QUERY_ENGINE_OPS ops = {
|
|
.r = r,
|
|
.rd = rd,
|
|
.grouping_add = r->internal.grouping_add,
|
|
.grouping_flush = r->internal.grouping_flush,
|
|
.tier_query_fetch = r->internal.tier_query_fetch,
|
|
.view_update_every = r->update_every,
|
|
.query_granularity = r->update_every / r->group,
|
|
.group_value_flags = RRDR_VALUE_NOTHING
|
|
};
|
|
|
|
long rrdr_line = -1;
|
|
bool use_anomaly_bit_as_value = (r->internal.query_options & RRDR_OPTION_ANOMALY_BIT) ? true : false;
|
|
|
|
query_plan(&ops, after_wanted, before_wanted, points_wanted);
|
|
|
|
NETDATA_DOUBLE min = r->min, max = r->max;
|
|
|
|
QUERY_POINT last2_point = QUERY_POINT_EMPTY;
|
|
QUERY_POINT last1_point = QUERY_POINT_EMPTY;
|
|
QUERY_POINT new_point = QUERY_POINT_EMPTY;
|
|
|
|
time_t now_start_time = after_wanted - ops.query_granularity;
|
|
time_t now_end_time = after_wanted + ops.view_update_every - ops.query_granularity;
|
|
|
|
// The main loop, based on the query granularity we need
|
|
for( ; (long)points_added < points_wanted ; now_start_time = now_end_time, now_end_time += ops.view_update_every) {
|
|
|
|
if(query_plan_should_switch_plan(ops, now_end_time))
|
|
query_planer_next_plan(&ops, now_end_time, new_point.end_time);
|
|
|
|
// read all the points of the db, prior to the time we need (now_end_time)
|
|
|
|
|
|
size_t count_same_end_time = 0;
|
|
while(count_same_end_time < 100) {
|
|
if(likely(count_same_end_time == 0)) {
|
|
last2_point = last1_point;
|
|
last1_point = new_point;
|
|
}
|
|
|
|
if(unlikely(ops.is_finished(&ops.handle))) {
|
|
if(count_same_end_time != 0) {
|
|
last2_point = last1_point;
|
|
last1_point = new_point;
|
|
}
|
|
new_point = QUERY_POINT_EMPTY;
|
|
new_point.start_time = last1_point.end_time;
|
|
new_point.end_time = now_end_time;
|
|
break;
|
|
}
|
|
|
|
// fetch the new point
|
|
{
|
|
STORAGE_POINT sp = ops.next_metric(&ops.handle);
|
|
|
|
ops.db_points_read_per_tier[ops.tier]++;
|
|
ops.db_total_points_read++;
|
|
|
|
new_point.start_time = sp.start_time;
|
|
new_point.end_time = sp.end_time;
|
|
new_point.anomaly = sp.count ? sp.anomaly_count * 100 / sp.count : 0;
|
|
query_point_set_id(new_point, ops.db_total_points_read);
|
|
|
|
// set the right value to the point we got
|
|
if(likely(!storage_point_is_unset(sp) && !storage_point_is_empty(sp))) {
|
|
|
|
if(unlikely(use_anomaly_bit_as_value))
|
|
new_point.value = (NETDATA_DOUBLE)new_point.anomaly;
|
|
|
|
else {
|
|
switch (ops.tier_query_fetch) {
|
|
default:
|
|
case TIER_QUERY_FETCH_AVERAGE:
|
|
new_point.value = sp.sum / sp.count;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_MIN:
|
|
new_point.value = sp.min;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_MAX:
|
|
new_point.value = sp.max;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_SUM:
|
|
new_point.value = sp.sum;
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
else {
|
|
new_point.value = NAN;
|
|
new_point.flags = SN_EMPTY_SLOT;
|
|
}
|
|
}
|
|
|
|
// check if the db is giving us zero duration points
|
|
if(unlikely(new_point.start_time == new_point.end_time)) {
|
|
internal_error(true, "QUERY: next_metric(%s, %s) returned point %zu start time %ld, end time %ld, that are both equal",
|
|
rd->rrdset->name, rd->name, new_point.id, new_point.start_time, new_point.end_time);
|
|
|
|
new_point.start_time = new_point.end_time - ((time_t)ops.tier_ptr->tier_grouping * (time_t)ops.rd->update_every);
|
|
}
|
|
|
|
// check if the db is advancing the query
|
|
if(unlikely(new_point.end_time <= last1_point.end_time)) {
|
|
internal_error(true, "QUERY: next_metric(%s, %s) returned point %zu from %ld time %ld, before the last point %zu end time %ld, now is %ld to %ld",
|
|
rd->rrdset->name, rd->name, new_point.id, new_point.start_time, new_point.end_time,
|
|
last1_point.id, last1_point.end_time, now_start_time, now_end_time);
|
|
|
|
count_same_end_time++;
|
|
continue;
|
|
}
|
|
count_same_end_time = 0;
|
|
|
|
// decide how to use this point
|
|
if(likely(new_point.end_time < now_end_time)) { // likely to favor tier0
|
|
// this db point ends before our now_end_time
|
|
|
|
if(likely(new_point.end_time >= now_start_time)) { // likely to favor tier0
|
|
// this db point ends after our now_start time
|
|
|
|
query_add_point_to_group(r, new_point, ops);
|
|
}
|
|
else {
|
|
// we don't need this db point
|
|
// it is totally outside our current time-frame
|
|
|
|
// this is desirable for the first point of the query
|
|
// because it allows us to interpolate the next point
|
|
// at exactly the time we will want
|
|
|
|
// we only log if this is not point 1
|
|
internal_error(new_point.end_time < after_wanted && new_point.id > 1,
|
|
"QUERY: next_metric(%s, %s) returned point %zu from %ld time %ld, which is entirely before our current timeframe %ld to %ld (and before the entire query, after %ld, before %ld)",
|
|
rd->rrdset->name, rd->name,
|
|
new_point.id, new_point.start_time, new_point.end_time,
|
|
now_start_time, now_end_time,
|
|
after_wanted, before_wanted);
|
|
}
|
|
|
|
}
|
|
else {
|
|
// the point ends in the future
|
|
// so, we will interpolate it below, at the inner loop
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(unlikely(count_same_end_time)) {
|
|
internal_error(true,
|
|
"QUERY: the database does not advance the query, it returned an end time less or equal to the end time of the last point we got %ld, %zu times",
|
|
last1_point.end_time, count_same_end_time);
|
|
|
|
if(unlikely(new_point.end_time <= last1_point.end_time))
|
|
new_point.end_time = now_end_time;
|
|
}
|
|
|
|
// the inner loop
|
|
// we have 3 points in memory: last2, last1, new
|
|
// we select the one to use based on their timestamps
|
|
|
|
size_t iterations = 0;
|
|
for ( ; now_end_time <= new_point.end_time && (long)points_added < points_wanted ;
|
|
now_end_time += ops.view_update_every, iterations++) {
|
|
|
|
// now_start_time is wrong in this loop
|
|
// but, we don't need it
|
|
|
|
QUERY_POINT current_point;
|
|
|
|
if(likely(now_end_time > new_point.start_time)) {
|
|
// it is time for our NEW point to be used
|
|
current_point = new_point;
|
|
query_interpolate_point(current_point, last1_point, now_end_time);
|
|
|
|
internal_error(current_point.id > 0 && last1_point.id == 0 && current_point.end_time > after_wanted && current_point.end_time > now_end_time,
|
|
"QUERY: on '%s', dim '%s', after %ld, before %ld, view update every %ld, query granularity %ld,"
|
|
" interpolating point %zu (from %ld to %ld) at %ld, but we could really favor by having last_point1 in this query.",
|
|
rd->rrdset->name, rd->name, after_wanted, before_wanted, ops.view_update_every, ops.query_granularity,
|
|
current_point.id, current_point.start_time, current_point.end_time, now_end_time);
|
|
}
|
|
else if(likely(now_end_time <= last1_point.end_time)) {
|
|
// our LAST point is still valid
|
|
current_point = last1_point;
|
|
query_interpolate_point(current_point, last2_point, now_end_time);
|
|
|
|
internal_error(current_point.id > 0 && last2_point.id == 0 && current_point.end_time > after_wanted && current_point.end_time > now_end_time,
|
|
"QUERY: on '%s', dim '%s', after %ld, before %ld, view update every %ld, query granularity %ld,"
|
|
" interpolating point %zu (from %ld to %ld) at %ld, but we could really favor by having last_point2 in this query.",
|
|
rd->rrdset->name, rd->name, after_wanted, before_wanted, ops.view_update_every, ops.query_granularity,
|
|
current_point.id, current_point.start_time, current_point.end_time, now_end_time);
|
|
}
|
|
else {
|
|
// a GAP, we don't have a value this time
|
|
current_point = QUERY_POINT_EMPTY;
|
|
}
|
|
|
|
query_add_point_to_group(r, current_point, ops);
|
|
|
|
rrdr_line = rrdr_line_init(r, now_end_time, rrdr_line);
|
|
size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
|
|
|
|
if(unlikely(!min_date)) min_date = now_end_time;
|
|
max_date = now_end_time;
|
|
|
|
// find the place to store our values
|
|
RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_o_v_index];
|
|
|
|
// update the dimension options
|
|
if(likely(ops.group_points_non_zero))
|
|
r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
|
|
|
|
// store the specific point options
|
|
*rrdr_value_options_ptr = ops.group_value_flags;
|
|
|
|
// store the group value
|
|
NETDATA_DOUBLE group_value = ops.grouping_flush(r, rrdr_value_options_ptr);
|
|
r->v[rrdr_o_v_index] = group_value;
|
|
|
|
// we only store uint8_t anomaly rates,
|
|
// so let's get double precision by storing
|
|
// anomaly rates in the range 0 - 200
|
|
ops.group_anomaly_rate = (ops.group_anomaly_rate << 1) / ops.group_points_added;
|
|
r->ar[rrdr_o_v_index] = (uint8_t)ops.group_anomaly_rate;
|
|
|
|
if(likely(points_added || dim_id_in_rrdr)) {
|
|
// find the min/max across all dimensions
|
|
|
|
if(unlikely(group_value < min)) min = group_value;
|
|
if(unlikely(group_value > max)) max = group_value;
|
|
|
|
}
|
|
else {
|
|
// runs only when dim_id_in_rrdr == 0 && points_added == 0
|
|
// so, on the first point added for the query.
|
|
min = max = group_value;
|
|
}
|
|
|
|
points_added++;
|
|
ops.group_points_added = 0;
|
|
ops.group_value_flags = RRDR_VALUE_NOTHING;
|
|
ops.group_points_non_zero = 0;
|
|
ops.group_anomaly_rate = 0;
|
|
}
|
|
// the loop above increased "now" by query_granularity,
|
|
// but the main loop will increase it too,
|
|
// so, let's undo the last iteration of this loop
|
|
if(iterations)
|
|
now_end_time -= ops.view_update_every;
|
|
}
|
|
ops.finalize(&ops.handle);
|
|
|
|
r->internal.result_points_generated += points_added;
|
|
r->internal.db_points_read += ops.db_total_points_read;
|
|
for(int tr = 0; tr < storage_tiers ; tr++)
|
|
r->internal.tier_points_read[tr] += ops.db_points_read_per_tier[tr];
|
|
|
|
r->min = min;
|
|
r->max = max;
|
|
r->before = max_date;
|
|
r->after = min_date - ops.view_update_every + ops.query_granularity;
|
|
rrdr_done(r, rrdr_line);
|
|
|
|
internal_error((long)points_added != points_wanted,
|
|
"QUERY: query on %s/%s requested %zu points, but RRDR added %zu (%zu db points read).",
|
|
r->st->name, rd->name, (size_t)points_wanted, (size_t)points_added, ops.db_total_points_read);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill the gap of a tier
|
|
|
|
extern void store_metric_at_tier(RRDDIM *rd, struct rrddim_tier *t, STORAGE_POINT sp, usec_t now_ut);
|
|
|
|
void rrdr_fill_tier_gap_from_smaller_tiers(RRDDIM *rd, int tier, time_t now) {
|
|
if(unlikely(tier < 0 || tier >= storage_tiers)) return;
|
|
if(storage_tiers_backfill[tier] == RRD_BACKFILL_NONE) return;
|
|
|
|
struct rrddim_tier *t = rd->tiers[tier];
|
|
if(unlikely(!t)) return;
|
|
|
|
time_t latest_time_t = t->query_ops.latest_time(t->db_metric_handle);
|
|
time_t granularity = (time_t)t->tier_grouping * (time_t)rd->update_every;
|
|
time_t time_diff = now - latest_time_t;
|
|
|
|
// if the user wants only NEW backfilling, and we don't have any data
|
|
if(storage_tiers_backfill[tier] == RRD_BACKFILL_NEW && latest_time_t <= 0) return;
|
|
|
|
// there is really nothing we can do
|
|
if(now <= latest_time_t || time_diff < granularity) return;
|
|
|
|
struct rrddim_query_handle handle;
|
|
|
|
size_t all_points_read = 0;
|
|
|
|
// for each lower tier
|
|
for(int tr = tier - 1; tr >= 0 ;tr--){
|
|
time_t smaller_tier_first_time = rd->tiers[tr]->query_ops.oldest_time(rd->tiers[tr]->db_metric_handle);
|
|
time_t smaller_tier_last_time = rd->tiers[tr]->query_ops.latest_time(rd->tiers[tr]->db_metric_handle);
|
|
if(smaller_tier_last_time <= latest_time_t) continue; // it is as bad as we are
|
|
|
|
long after_wanted = (latest_time_t < smaller_tier_first_time) ? smaller_tier_first_time : latest_time_t;
|
|
long before_wanted = smaller_tier_last_time;
|
|
|
|
struct rrddim_tier *tmp = rd->tiers[tr];
|
|
tmp->query_ops.init(tmp->db_metric_handle, &handle, after_wanted, before_wanted, TIER_QUERY_FETCH_AVERAGE);
|
|
|
|
size_t points = 0;
|
|
|
|
while(!tmp->query_ops.is_finished(&handle)) {
|
|
|
|
STORAGE_POINT sp = tmp->query_ops.next_metric(&handle);
|
|
|
|
if(sp.end_time > latest_time_t) {
|
|
latest_time_t = sp.end_time;
|
|
store_metric_at_tier(rd, t, sp, sp.end_time * USEC_PER_SEC);
|
|
points++;
|
|
}
|
|
}
|
|
|
|
all_points_read += points;
|
|
tmp->query_ops.finalize(&handle);
|
|
|
|
internal_error(true, "DBENGINE: backfilled chart '%s', dimension '%s', tier %d, from %ld to %ld, with %zu points from tier %d",
|
|
rd->rrdset->name, rd->name, tier, after_wanted, before_wanted, points, tr);
|
|
}
|
|
|
|
rrdr_query_completed(all_points_read, all_points_read);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill RRDR for the whole chart
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
static void rrd2rrdr_log_request_response_metadata(RRDR *r
|
|
, RRDR_OPTIONS options __maybe_unused
|
|
, RRDR_GROUPING group_method
|
|
, bool aligned
|
|
, long group
|
|
, long resampling_time
|
|
, long resampling_group
|
|
, time_t after_wanted
|
|
, time_t after_requested
|
|
, time_t before_wanted
|
|
, time_t before_requested
|
|
, long points_requested
|
|
, long points_wanted
|
|
//, size_t after_slot
|
|
//, size_t before_slot
|
|
, const char *msg
|
|
) {
|
|
netdata_rwlock_rdlock(&r->st->rrdset_rwlock);
|
|
info("INTERNAL ERROR: rrd2rrdr() on %s update every %d with %s grouping %s (group: %ld, resampling_time: %ld, resampling_group: %ld), "
|
|
"after (got: %zu, want: %zu, req: %ld, db: %zu), "
|
|
"before (got: %zu, want: %zu, req: %ld, db: %zu), "
|
|
"duration (got: %zu, want: %zu, req: %ld, db: %zu), "
|
|
//"slot (after: %zu, before: %zu, delta: %zu), "
|
|
"points (got: %ld, want: %ld, req: %ld, db: %ld), "
|
|
"%s"
|
|
, r->st->name
|
|
, r->st->update_every
|
|
|
|
// grouping
|
|
, (aligned) ? "aligned" : "unaligned"
|
|
, group_method2string(group_method)
|
|
, group
|
|
, resampling_time
|
|
, resampling_group
|
|
|
|
// after
|
|
, (size_t)r->after
|
|
, (size_t)after_wanted
|
|
, after_requested
|
|
, (size_t)rrdset_first_entry_t_nolock(r->st)
|
|
|
|
// before
|
|
, (size_t)r->before
|
|
, (size_t)before_wanted
|
|
, before_requested
|
|
, (size_t)rrdset_last_entry_t_nolock(r->st)
|
|
|
|
// duration
|
|
, (size_t)(r->before - r->after + r->st->update_every)
|
|
, (size_t)(before_wanted - after_wanted + r->st->update_every)
|
|
, before_requested - after_requested
|
|
, (size_t)((rrdset_last_entry_t_nolock(r->st) - rrdset_first_entry_t_nolock(r->st)) + r->st->update_every)
|
|
|
|
// slot
|
|
/*
|
|
, after_slot
|
|
, before_slot
|
|
, (after_slot > before_slot) ? (r->st->entries - after_slot + before_slot) : (before_slot - after_slot)
|
|
*/
|
|
|
|
// points
|
|
, r->rows
|
|
, points_wanted
|
|
, points_requested
|
|
, r->st->entries
|
|
|
|
// message
|
|
, msg
|
|
);
|
|
netdata_rwlock_unlock(&r->st->rrdset_rwlock);
|
|
}
|
|
#endif // NETDATA_INTERNAL_CHECKS
|
|
|
|
// Returns 1 if an absolute period was requested or 0 if it was a relative period
|
|
int rrdr_relative_window_to_absolute(long long *after, long long *before) {
|
|
time_t now = now_realtime_sec() - 1;
|
|
|
|
int absolute_period_requested = -1;
|
|
long long after_requested, before_requested;
|
|
|
|
before_requested = *before;
|
|
after_requested = *after;
|
|
|
|
// allow relative for before (smaller than API_RELATIVE_TIME_MAX)
|
|
if(ABS(before_requested) <= API_RELATIVE_TIME_MAX) {
|
|
// if the user asked for a positive relative time,
|
|
// flip it to a negative
|
|
if(before_requested > 0)
|
|
before_requested = -before_requested;
|
|
|
|
before_requested = now + before_requested;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
// allow relative for after (smaller than API_RELATIVE_TIME_MAX)
|
|
if(ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
|
|
if(after_requested > 0)
|
|
after_requested = -after_requested;
|
|
|
|
// if the user didn't give an after, use the number of points
|
|
// to give a sane default
|
|
if(after_requested == 0)
|
|
after_requested = -600;
|
|
|
|
// since the query engine now returns inclusive timestamps
|
|
// it is awkward to return 6 points when after=-5 is given
|
|
// so for relative queries we add 1 second, to give
|
|
// more predictable results to users.
|
|
after_requested = before_requested + after_requested + 1;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
if(absolute_period_requested == -1)
|
|
absolute_period_requested = 1;
|
|
|
|
// check if the parameters are flipped
|
|
if(after_requested > before_requested) {
|
|
long long t = before_requested;
|
|
before_requested = after_requested;
|
|
after_requested = t;
|
|
}
|
|
|
|
// if the query requests future data
|
|
// shift the query back to be in the present time
|
|
// (this may also happen because of the rules above)
|
|
if(before_requested > now) {
|
|
long long delta = before_requested - now;
|
|
before_requested -= delta;
|
|
after_requested -= delta;
|
|
}
|
|
|
|
*before = before_requested;
|
|
*after = after_requested;
|
|
|
|
return absolute_period_requested;
|
|
}
|
|
|
|
// #define DEBUG_QUERY_LOGIC 1
|
|
|
|
#ifdef DEBUG_QUERY_LOGIC
|
|
#define query_debug_log_init() BUFFER *debug_log = buffer_create(1000)
|
|
#define query_debug_log(args...) buffer_sprintf(debug_log, ##args)
|
|
#define query_debug_log_fin() { \
|
|
info("QUERY: chart '%s', after:%lld, before:%lld, duration:%lld, points:%ld, res:%ld - wanted => after:%lld, before:%lld, points:%ld, group:%ld, granularity:%ld, resgroup:%ld, resdiv:" NETDATA_DOUBLE_FORMAT_AUTO " %s", st->name, after_requested, before_requested, before_requested - after_requested, points_requested, resampling_time_requested, after_wanted, before_wanted, points_wanted, group, query_granularity, resampling_group, resampling_divisor, buffer_tostring(debug_log)); \
|
|
buffer_free(debug_log); \
|
|
debug_log = NULL; \
|
|
}
|
|
#define query_debug_log_free() do { buffer_free(debug_log); } while(0)
|
|
#else
|
|
#define query_debug_log_init() debug_dummy()
|
|
#define query_debug_log(args...) debug_dummy()
|
|
#define query_debug_log_fin() debug_dummy()
|
|
#define query_debug_log_free() debug_dummy()
|
|
#endif
|
|
|
|
RRDR *rrd2rrdr(
|
|
ONEWAYALLOC *owa
|
|
, RRDSET *st
|
|
, long points_requested
|
|
, long long after_requested
|
|
, long long before_requested
|
|
, RRDR_GROUPING group_method
|
|
, long resampling_time_requested
|
|
, RRDR_OPTIONS options
|
|
, const char *dimensions
|
|
, struct context_param *context_param_list
|
|
, const char *group_options
|
|
, int timeout
|
|
, int tier
|
|
) {
|
|
// RULES
|
|
// points_requested = 0
|
|
// the user wants all the natural points the database has
|
|
//
|
|
// after_requested = 0
|
|
// the user wants to start the query from the oldest point in our database
|
|
//
|
|
// before_requested = 0
|
|
// the user wants the query to end to the latest point in our database
|
|
//
|
|
// when natural points are wanted, the query has to be aligned to the update_every
|
|
// of the database
|
|
|
|
long points_wanted = points_requested;
|
|
long long after_wanted = after_requested;
|
|
long long before_wanted = before_requested;
|
|
int update_every = st->update_every;
|
|
|
|
bool aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
|
|
bool automatic_natural_points = (points_wanted == 0);
|
|
bool relative_period_requested = false;
|
|
bool natural_points = (options & RRDR_OPTION_NATURAL_POINTS) || automatic_natural_points;
|
|
bool before_is_aligned_to_db_end = false;
|
|
|
|
query_debug_log_init();
|
|
|
|
// make sure points_wanted is positive
|
|
if(points_wanted < 0) {
|
|
points_wanted = -points_wanted;
|
|
query_debug_log(":-points_wanted %ld", points_wanted);
|
|
}
|
|
|
|
if(ABS(before_requested) <= API_RELATIVE_TIME_MAX || ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
|
|
relative_period_requested = true;
|
|
natural_points = true;
|
|
options |= RRDR_OPTION_NATURAL_POINTS;
|
|
query_debug_log(":relative+natural");
|
|
}
|
|
|
|
// if the user wants virtual points, make sure we do it
|
|
if(options & RRDR_OPTION_VIRTUAL_POINTS)
|
|
natural_points = false;
|
|
|
|
// set the right flag about natural and virtual points
|
|
if(natural_points) {
|
|
options |= RRDR_OPTION_NATURAL_POINTS;
|
|
|
|
if(options & RRDR_OPTION_VIRTUAL_POINTS)
|
|
options &= ~RRDR_OPTION_VIRTUAL_POINTS;
|
|
}
|
|
else {
|
|
options |= RRDR_OPTION_VIRTUAL_POINTS;
|
|
|
|
if(options & RRDR_OPTION_NATURAL_POINTS)
|
|
options &= ~RRDR_OPTION_NATURAL_POINTS;
|
|
}
|
|
|
|
if(after_wanted == 0 || before_wanted == 0) {
|
|
// for non-context queries we have to find the duration of the database
|
|
// for context queries we will assume 600 seconds duration
|
|
|
|
if(!context_param_list) {
|
|
relative_period_requested = true;
|
|
|
|
rrdset_rdlock(st);
|
|
time_t first_entry_t = rrdset_first_entry_t_nolock(st);
|
|
time_t last_entry_t = rrdset_last_entry_t_nolock(st);
|
|
rrdset_unlock(st);
|
|
|
|
if(first_entry_t == 0 || last_entry_t == 0) {
|
|
internal_error(true, "QUERY: chart without data detected on '%s'", st->name);
|
|
query_debug_log_free();
|
|
return NULL;
|
|
}
|
|
|
|
query_debug_log(":first_entry_t %ld, last_entry_t %ld", first_entry_t, last_entry_t);
|
|
|
|
if (after_wanted == 0) {
|
|
after_wanted = first_entry_t;
|
|
query_debug_log(":zero after_wanted %lld", after_wanted);
|
|
}
|
|
|
|
if (before_wanted == 0) {
|
|
before_wanted = last_entry_t;
|
|
before_is_aligned_to_db_end = true;
|
|
query_debug_log(":zero before_wanted %lld", before_wanted);
|
|
}
|
|
|
|
if(points_wanted == 0) {
|
|
points_wanted = (last_entry_t - first_entry_t) / update_every;
|
|
query_debug_log(":zero points_wanted %ld", points_wanted);
|
|
}
|
|
}
|
|
|
|
// if they are still zero, assume 600
|
|
|
|
if(after_wanted == 0) {
|
|
after_wanted = -600;
|
|
query_debug_log(":zero600 after_wanted %lld", after_wanted);
|
|
}
|
|
}
|
|
|
|
if(points_wanted == 0) {
|
|
points_wanted = 600;
|
|
query_debug_log(":zero600 points_wanted %ld", points_wanted);
|
|
}
|
|
|
|
// convert our before_wanted and after_wanted to absolute
|
|
rrdr_relative_window_to_absolute(&after_wanted, &before_wanted);
|
|
query_debug_log(":relative2absolute after %lld, before %lld", after_wanted, before_wanted);
|
|
|
|
if(natural_points && (options & RRDR_OPTION_SELECTED_TIER) && tier > 0 && storage_tiers > 1) {
|
|
update_every = rrdset_find_natural_update_every_for_timeframe(st, after_wanted, before_wanted, points_wanted, options, tier);
|
|
if(update_every <= 0) update_every = st->update_every;
|
|
query_debug_log(":natural update every %d", update_every);
|
|
}
|
|
|
|
// this is the update_every of the query
|
|
// it may be different to the update_every of the database
|
|
time_t query_granularity = (natural_points)?update_every:1;
|
|
if(query_granularity <= 0) query_granularity = 1;
|
|
query_debug_log(":query_granularity %ld", query_granularity);
|
|
|
|
// align before_wanted and after_wanted to query_granularity
|
|
if (before_wanted % query_granularity) {
|
|
before_wanted -= before_wanted % query_granularity;
|
|
query_debug_log(":granularity align before_wanted %lld", before_wanted);
|
|
}
|
|
|
|
if (after_wanted % query_granularity) {
|
|
after_wanted -= after_wanted % query_granularity;
|
|
query_debug_log(":granularity align after_wanted %lld", after_wanted);
|
|
}
|
|
|
|
// automatic_natural_points is set when the user wants all the points available in the database
|
|
if(automatic_natural_points) {
|
|
points_wanted = (before_wanted - after_wanted + 1) / query_granularity;
|
|
if(unlikely(points_wanted <= 0)) points_wanted = 1;
|
|
query_debug_log(":auto natural points_wanted %ld", points_wanted);
|
|
}
|
|
|
|
time_t duration = before_wanted - after_wanted;
|
|
|
|
// if the resampling time is too big, extend the duration to the past
|
|
if (unlikely(resampling_time_requested > duration)) {
|
|
after_wanted = before_wanted - resampling_time_requested;
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":resampling after_wanted %lld", after_wanted);
|
|
}
|
|
|
|
// if the duration is not aligned to resampling time
|
|
// extend the duration to the past, to avoid a gap at the chart
|
|
// only when the missing duration is above 1/10th of a point
|
|
if(resampling_time_requested > query_granularity && duration % resampling_time_requested) {
|
|
time_t delta = duration % resampling_time_requested;
|
|
if(delta > resampling_time_requested / 10) {
|
|
after_wanted -= resampling_time_requested - delta;
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":resampling2 after_wanted %lld", after_wanted);
|
|
}
|
|
}
|
|
|
|
// the available points of the query
|
|
long points_available = (duration + 1) / query_granularity;
|
|
if(unlikely(points_available <= 0)) points_available = 1;
|
|
query_debug_log(":points_available %ld", points_available);
|
|
|
|
if(points_wanted > points_available) {
|
|
points_wanted = points_available;
|
|
query_debug_log(":max points_wanted %ld", points_wanted);
|
|
}
|
|
|
|
// calculate the desired grouping of source data points
|
|
long group = points_available / points_wanted;
|
|
if(group <= 0) group = 1;
|
|
|
|
// round "group" to the closest integer
|
|
if(points_available % points_wanted > points_wanted / 2)
|
|
group++;
|
|
|
|
query_debug_log(":group %ld", group);
|
|
|
|
if(points_wanted * group * query_granularity < duration) {
|
|
// the grouping we are going to do, is not enough
|
|
// to cover the entire duration requested, so
|
|
// we have to change the number of points, to make sure we will
|
|
// respect the timeframe as closely as possibly
|
|
|
|
// let's see how many points are the optimal
|
|
points_wanted = points_available / group;
|
|
|
|
if(points_wanted * group < points_available)
|
|
points_wanted++;
|
|
|
|
if(unlikely(points_wanted <= 0))
|
|
points_wanted = 1;
|
|
|
|
query_debug_log(":optimal points %ld", points_wanted);
|
|
}
|
|
|
|
// resampling_time_requested enforces a certain grouping multiple
|
|
NETDATA_DOUBLE resampling_divisor = 1.0;
|
|
long resampling_group = 1;
|
|
if(unlikely(resampling_time_requested > query_granularity)) {
|
|
// the points we should group to satisfy gtime
|
|
resampling_group = resampling_time_requested / query_granularity;
|
|
if(unlikely(resampling_time_requested % query_granularity))
|
|
resampling_group++;
|
|
|
|
query_debug_log(":resampling group %ld", resampling_group);
|
|
|
|
// adapt group according to resampling_group
|
|
if(unlikely(group < resampling_group)) {
|
|
group = resampling_group; // do not allow grouping below the desired one
|
|
query_debug_log(":group less res %ld", group);
|
|
}
|
|
if(unlikely(group % resampling_group)) {
|
|
group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
|
|
query_debug_log(":group mod res %ld", group);
|
|
}
|
|
|
|
// resampling_divisor = group / resampling_group;
|
|
resampling_divisor = (NETDATA_DOUBLE)(group * query_granularity) / (NETDATA_DOUBLE)resampling_time_requested;
|
|
query_debug_log(":resampling divisor " NETDATA_DOUBLE_FORMAT, resampling_divisor);
|
|
}
|
|
|
|
// now that we have group, align the requested timeframe to fit it.
|
|
if(aligned && before_wanted % (group * query_granularity)) {
|
|
if(before_is_aligned_to_db_end)
|
|
before_wanted -= before_wanted % (group * query_granularity);
|
|
else
|
|
before_wanted += (group * query_granularity) - before_wanted % (group * query_granularity);
|
|
query_debug_log(":align before_wanted %lld", before_wanted);
|
|
}
|
|
|
|
after_wanted = before_wanted - (points_wanted * group * query_granularity) + query_granularity;
|
|
query_debug_log(":final after_wanted %lld", after_wanted);
|
|
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":final duration %ld", duration + 1);
|
|
|
|
// check the context query based on the starting time of the query
|
|
if (context_param_list && !(context_param_list->flags & CONTEXT_FLAGS_ARCHIVE)) {
|
|
rebuild_context_param_list(owa, context_param_list, after_wanted);
|
|
st = context_param_list->rd ? context_param_list->rd->rrdset : NULL;
|
|
|
|
if(unlikely(!st))
|
|
return NULL;
|
|
}
|
|
|
|
internal_error(points_wanted != duration / (query_granularity * group) + 1,
|
|
"QUERY: points_wanted %ld is not points %ld",
|
|
points_wanted, duration / (query_granularity * group) + 1);
|
|
|
|
internal_error(group < resampling_group,
|
|
"QUERY: group %ld is less than the desired group points %ld",
|
|
group, resampling_group);
|
|
|
|
internal_error(group > resampling_group && group % resampling_group,
|
|
"QUERY: group %ld is not a multiple of the desired group points %ld",
|
|
group, resampling_group);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// initialize our result set
|
|
// this also locks the chart for us
|
|
|
|
RRDR *r = rrdr_create(owa, st, points_wanted, context_param_list);
|
|
if(unlikely(!r)) {
|
|
internal_error(true, "QUERY: cannot create RRDR for %s, after=%u, before=%u, duration=%u, points=%ld",
|
|
st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (uint32_t)duration, points_wanted);
|
|
return NULL;
|
|
}
|
|
|
|
if(unlikely(!r->d || !points_wanted)) {
|
|
internal_error(true, "QUERY: returning empty RRDR (no dimensions in RRDSET) for %s, after=%u, before=%u, duration=%zu, points=%ld",
|
|
st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (size_t)duration, points_wanted);
|
|
return r;
|
|
}
|
|
|
|
if(relative_period_requested)
|
|
r->result_options |= RRDR_RESULT_OPTION_RELATIVE;
|
|
else
|
|
r->result_options |= RRDR_RESULT_OPTION_ABSOLUTE;
|
|
|
|
// find how many dimensions we have
|
|
long dimensions_count = r->d;
|
|
|
|
// -------------------------------------------------------------------------
|
|
// initialize RRDR
|
|
|
|
r->group = group;
|
|
r->update_every = (int)(group * query_granularity);
|
|
r->before = before_wanted;
|
|
r->after = after_wanted;
|
|
r->internal.points_wanted = points_wanted;
|
|
r->internal.resampling_group = resampling_group;
|
|
r->internal.resampling_divisor = resampling_divisor;
|
|
r->internal.query_options = options;
|
|
r->internal.query_tier = tier;
|
|
|
|
// -------------------------------------------------------------------------
|
|
// assign the processor functions
|
|
rrdr_set_grouping_function(r, group_method);
|
|
|
|
// allocate any memory required by the grouping method
|
|
r->internal.grouping_create(r, group_options);
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// disable the not-wanted dimensions
|
|
|
|
if (context_param_list && !(context_param_list->flags & CONTEXT_FLAGS_ARCHIVE))
|
|
rrdset_check_rdlock(st);
|
|
|
|
if(dimensions)
|
|
rrdr_disable_not_selected_dimensions(r, options, dimensions, context_param_list);
|
|
|
|
|
|
query_debug_log_fin();
|
|
|
|
// -------------------------------------------------------------------------
|
|
// do the work for each dimension
|
|
|
|
time_t max_after = 0, min_before = 0;
|
|
long max_rows = 0;
|
|
|
|
RRDDIM *first_rd = context_param_list ? context_param_list->rd : st->dimensions;
|
|
RRDDIM *rd;
|
|
long c, dimensions_used = 0, dimensions_nonzero = 0;
|
|
struct timeval query_start_time;
|
|
struct timeval query_current_time;
|
|
if (timeout) now_realtime_timeval(&query_start_time);
|
|
|
|
for(rd = first_rd, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
|
|
|
|
// if we need a percentage, we need to calculate all dimensions
|
|
if(unlikely(!(options & RRDR_OPTION_PERCENTAGE) && (r->od[c] & RRDR_DIMENSION_HIDDEN))) {
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
|
|
continue;
|
|
}
|
|
r->od[c] |= RRDR_DIMENSION_SELECTED;
|
|
|
|
// reset the grouping for the new dimension
|
|
r->internal.grouping_reset(r);
|
|
|
|
rrd2rrdr_do_dimension(r, points_wanted, rd, c, after_wanted, before_wanted);
|
|
if (timeout)
|
|
now_realtime_timeval(&query_current_time);
|
|
|
|
if(r->od[c] & RRDR_DIMENSION_NONZERO)
|
|
dimensions_nonzero++;
|
|
|
|
// verify all dimensions are aligned
|
|
if(unlikely(!dimensions_used)) {
|
|
min_before = r->before;
|
|
max_after = r->after;
|
|
max_rows = r->rows;
|
|
}
|
|
else {
|
|
if(r->after != max_after) {
|
|
internal_error(true, "QUERY: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)max_after, rd->name, (size_t)r->after);
|
|
|
|
r->after = (r->after > max_after) ? r->after : max_after;
|
|
}
|
|
|
|
if(r->before != min_before) {
|
|
internal_error(true, "QUERY: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)min_before, rd->name, (size_t)r->before);
|
|
|
|
r->before = (r->before < min_before) ? r->before : min_before;
|
|
}
|
|
|
|
if(r->rows != max_rows) {
|
|
internal_error(true, "QUERY: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
st->name, (size_t)max_rows, rd->name, (size_t)r->rows);
|
|
|
|
r->rows = (r->rows > max_rows) ? r->rows : max_rows;
|
|
}
|
|
}
|
|
|
|
dimensions_used++;
|
|
if (timeout && ((NETDATA_DOUBLE)dt_usec(&query_start_time, &query_current_time) / 1000.0) > timeout) {
|
|
log_access("QUERY CANCELED RUNTIME EXCEEDED %0.2f ms (LIMIT %d ms)",
|
|
(NETDATA_DOUBLE)dt_usec(&query_start_time, &query_current_time) / 1000.0, timeout);
|
|
r->result_options |= RRDR_RESULT_OPTION_CANCEL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
if (dimensions_used) {
|
|
if(r->internal.log)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted, before_requested,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
r->internal.log);
|
|
|
|
if(r->rows != points_wanted)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted, before_requested,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
"got 'points' is not wanted 'points'");
|
|
|
|
if(aligned && (r->before % (group * query_granularity)) != 0)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted,before_wanted,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
"'before' is not aligned but alignment is required");
|
|
|
|
// 'after' should not be aligned, since we start inside the first group
|
|
//if(aligned && (r->after % group) != 0)
|
|
// rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
|
|
|
|
if(r->before != before_wanted)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted, before_requested,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
"chart is not aligned to requested 'before'");
|
|
|
|
if(r->before != before_wanted)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted, before_requested,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
"got 'before' is not wanted 'before'");
|
|
|
|
// reported 'after' varies, depending on group
|
|
if(r->after != after_wanted)
|
|
rrd2rrdr_log_request_response_metadata(r, options, group_method, aligned, group, resampling_time_requested, resampling_group,
|
|
after_wanted, after_requested, before_wanted, before_requested,
|
|
points_requested, points_wanted, /*after_slot, before_slot,*/
|
|
"got 'after' is not wanted 'after'");
|
|
|
|
}
|
|
#endif
|
|
|
|
// free all resources used by the grouping method
|
|
r->internal.grouping_free(r);
|
|
|
|
// when all the dimensions are zero, we should return all of them
|
|
if(unlikely(options & RRDR_OPTION_NONZERO && !dimensions_nonzero && !(r->result_options & RRDR_RESULT_OPTION_CANCEL))) {
|
|
// all the dimensions are zero
|
|
// mark them as NONZERO to send them all
|
|
for(rd = first_rd, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
|
|
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) continue;
|
|
r->od[c] |= RRDR_DIMENSION_NONZERO;
|
|
}
|
|
}
|
|
|
|
rrdr_query_completed(r->internal.db_points_read, r->internal.result_points_generated);
|
|
return r;
|
|
}
|