mirror of
https://github.com/netdata/netdata.git
synced 2025-04-26 05:47:20 +00:00

* incremental overflows do not show zeros; fixes #4533 * use the max per metric per session for detecting counter size
248 lines
6.6 KiB
C
248 lines
6.6 KiB
C
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "../libnetdata.h"
|
|
|
|
storage_number pack_storage_number(calculated_number value, uint32_t flags) {
|
|
// bit 32 = sign 0:positive, 1:negative
|
|
// bit 31 = 0:divide, 1:multiply
|
|
// bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
|
|
// bit 27 SN_EXISTS_100
|
|
// bit 26 SN_EXISTS_RESET
|
|
// bit 25 SN_EXISTS
|
|
// bit 24 to bit 1 = the value
|
|
|
|
storage_number r = get_storage_number_flags(flags);
|
|
if(!value) return r;
|
|
|
|
int m = 0;
|
|
calculated_number n = value, factor = 10;
|
|
|
|
// if the value is negative
|
|
// add the sign bit and make it positive
|
|
if(n < 0) {
|
|
r += (1 << 31); // the sign bit 32
|
|
n = -n;
|
|
}
|
|
|
|
if(n / 10000000.0 > 0x00ffffff) {
|
|
factor = 100;
|
|
r |= SN_EXISTS_100;
|
|
}
|
|
|
|
// make its integer part fit in 0x00ffffff
|
|
// by dividing it by 10 up to 7 times
|
|
// and increasing the multiplier
|
|
while(m < 7 && n > (calculated_number)0x00ffffff) {
|
|
n /= factor;
|
|
m++;
|
|
}
|
|
|
|
if(m) {
|
|
// the value was too big and we divided it
|
|
// so we add a multiplier to unpack it
|
|
r += (1 << 30) + (m << 27); // the multiplier m
|
|
|
|
if(n > (calculated_number)0x00ffffff) {
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
error("Number " CALCULATED_NUMBER_FORMAT " is too big.", value);
|
|
#endif
|
|
r += 0x00ffffff;
|
|
return r;
|
|
}
|
|
}
|
|
else {
|
|
// 0x0019999e is the number that can be multiplied
|
|
// by 10 to give 0x00ffffff
|
|
// while the value is below 0x0019999e we can
|
|
// multiply it by 10, up to 7 times, increasing
|
|
// the multiplier
|
|
while(m < 7 && n < (calculated_number)0x0019999e) {
|
|
n *= 10;
|
|
m++;
|
|
}
|
|
|
|
// the value was small enough and we multiplied it
|
|
// so we add a divider to unpack it
|
|
r += (0 << 30) + (m << 27); // the divider m
|
|
}
|
|
|
|
#ifdef STORAGE_WITH_MATH
|
|
// without this there are rounding problems
|
|
// example: 0.9 becomes 0.89
|
|
r += lrint((double) n);
|
|
#else
|
|
r += (storage_number)n;
|
|
#endif
|
|
|
|
return r;
|
|
}
|
|
|
|
calculated_number unpack_storage_number(storage_number value) {
|
|
if(!value) return 0;
|
|
|
|
int sign = 0, exp = 0;
|
|
int factor = 10;
|
|
|
|
// bit 32 = 0:positive, 1:negative
|
|
if(unlikely(value & (1 << 31)))
|
|
sign = 1;
|
|
|
|
// bit 31 = 0:divide, 1:multiply
|
|
if(unlikely(value & (1 << 30)))
|
|
exp = 1;
|
|
|
|
// bit 27 SN_EXISTS_100
|
|
if(unlikely(value & (1 << 26)))
|
|
factor = 100;
|
|
|
|
// bit 26 SN_EXISTS_RESET
|
|
// bit 25 SN_EXISTS
|
|
|
|
// bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
|
|
int mul = (value & ((1<<29)|(1<<28)|(1<<27))) >> 27;
|
|
|
|
// bit 24 to bit 1 = the value, so remove all other bits
|
|
value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24));
|
|
|
|
calculated_number n = value;
|
|
|
|
// fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n);
|
|
|
|
if(exp) {
|
|
for(; mul; mul--)
|
|
n *= factor;
|
|
}
|
|
else {
|
|
for( ; mul ; mul--)
|
|
n /= 10;
|
|
}
|
|
|
|
if(sign) n = -n;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
int print_calculated_number(char *str, calculated_number value)
|
|
{
|
|
char *wstr = str;
|
|
|
|
int sign = (value < 0) ? 1 : 0;
|
|
if(sign) value = -value;
|
|
|
|
#ifdef STORAGE_WITH_MATH
|
|
// without llrintl() there are rounding problems
|
|
// for example 0.9 becomes 0.89
|
|
unsigned long long uvalue = (unsigned long long int) llrintl(value * (calculated_number)100000);
|
|
#else
|
|
unsigned long long uvalue = value * (calculated_number)100000;
|
|
#endif
|
|
|
|
wstr = print_number_llu_r_smart(str, uvalue);
|
|
|
|
// make sure we have 6 bytes at least
|
|
while((wstr - str) < 6) *wstr++ = '0';
|
|
|
|
// put the sign back
|
|
if(sign) *wstr++ = '-';
|
|
|
|
// reverse it
|
|
char *begin = str, *end = --wstr, aux;
|
|
while (end > begin) aux = *end, *end-- = *begin, *begin++ = aux;
|
|
// wstr--;
|
|
// strreverse(str, wstr);
|
|
|
|
// remove trailing zeros
|
|
int decimal = 5;
|
|
while(decimal > 0 && *wstr == '0') {
|
|
*wstr-- = '\0';
|
|
decimal--;
|
|
}
|
|
|
|
// terminate it, one position to the right
|
|
// to let space for a dot
|
|
wstr[2] = '\0';
|
|
|
|
// make space for the dot
|
|
int i;
|
|
for(i = 0; i < decimal ;i++) {
|
|
wstr[1] = wstr[0];
|
|
wstr--;
|
|
}
|
|
|
|
// put the dot
|
|
if(wstr[2] == '\0') { wstr[1] = '\0'; decimal--; }
|
|
else wstr[1] = '.';
|
|
|
|
// return the buffer length
|
|
return (int) ((wstr - str) + 2 + decimal );
|
|
}
|
|
*/
|
|
|
|
int print_calculated_number(char *str, calculated_number value) {
|
|
// info("printing number " CALCULATED_NUMBER_FORMAT, value);
|
|
char integral_str[50], fractional_str[50];
|
|
|
|
char *wstr = str;
|
|
|
|
if(unlikely(value < 0)) {
|
|
*wstr++ = '-';
|
|
value = -value;
|
|
}
|
|
|
|
calculated_number integral, fractional;
|
|
|
|
#ifdef STORAGE_WITH_MATH
|
|
fractional = calculated_number_modf(value, &integral) * 10000000.0;
|
|
#else
|
|
fractional = ((unsigned long long)(value * 10000000ULL) % 10000000ULL);
|
|
#endif
|
|
|
|
unsigned long long integral_int = (unsigned long long)integral;
|
|
unsigned long long fractional_int = (unsigned long long)calculated_number_llrint(fractional);
|
|
if(unlikely(fractional_int >= 10000000)) {
|
|
integral_int += 1;
|
|
fractional_int -= 10000000;
|
|
}
|
|
|
|
// info("integral " CALCULATED_NUMBER_FORMAT " (%llu), fractional " CALCULATED_NUMBER_FORMAT " (%llu)", integral, integral_int, fractional, fractional_int);
|
|
|
|
char *istre;
|
|
if(unlikely(integral_int == 0)) {
|
|
integral_str[0] = '0';
|
|
istre = &integral_str[1];
|
|
}
|
|
else
|
|
// convert the integral part to string (reversed)
|
|
istre = print_number_llu_r_smart(integral_str, integral_int);
|
|
|
|
// copy reversed the integral string
|
|
istre--;
|
|
while( istre >= integral_str ) *wstr++ = *istre--;
|
|
|
|
if(likely(fractional_int != 0)) {
|
|
// add a dot
|
|
*wstr++ = '.';
|
|
|
|
// convert the fractional part to string (reversed)
|
|
char *fstre = print_number_llu_r_smart(fractional_str, fractional_int);
|
|
|
|
// prepend zeros to reach 7 digits length
|
|
int decimal = 7;
|
|
int len = (int)(fstre - fractional_str);
|
|
while(len < decimal) {
|
|
*wstr++ = '0';
|
|
len++;
|
|
}
|
|
|
|
char *begin = fractional_str;
|
|
while(begin < fstre && *begin == '0') begin++;
|
|
|
|
// copy reversed the fractional string
|
|
fstre--;
|
|
while( fstre >= begin ) *wstr++ = *fstre--;
|
|
}
|
|
|
|
*wstr = '\0';
|
|
// info("printed number '%s'", str);
|
|
return (int)(wstr - str);
|
|
}
|