0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-26 05:47:20 +00:00
netdata_netdata/libnetdata/storage_number/storage_number.c
Costa Tsaousis 36199f4498
incremental overflows should not show zeros values ()
* incremental overflows do not show zeros; fixes 

* use the max per metric per session for detecting counter size
2018-11-04 21:53:19 +02:00

248 lines
6.6 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
storage_number pack_storage_number(calculated_number value, uint32_t flags) {
// bit 32 = sign 0:positive, 1:negative
// bit 31 = 0:divide, 1:multiply
// bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
// bit 27 SN_EXISTS_100
// bit 26 SN_EXISTS_RESET
// bit 25 SN_EXISTS
// bit 24 to bit 1 = the value
storage_number r = get_storage_number_flags(flags);
if(!value) return r;
int m = 0;
calculated_number n = value, factor = 10;
// if the value is negative
// add the sign bit and make it positive
if(n < 0) {
r += (1 << 31); // the sign bit 32
n = -n;
}
if(n / 10000000.0 > 0x00ffffff) {
factor = 100;
r |= SN_EXISTS_100;
}
// make its integer part fit in 0x00ffffff
// by dividing it by 10 up to 7 times
// and increasing the multiplier
while(m < 7 && n > (calculated_number)0x00ffffff) {
n /= factor;
m++;
}
if(m) {
// the value was too big and we divided it
// so we add a multiplier to unpack it
r += (1 << 30) + (m << 27); // the multiplier m
if(n > (calculated_number)0x00ffffff) {
#ifdef NETDATA_INTERNAL_CHECKS
error("Number " CALCULATED_NUMBER_FORMAT " is too big.", value);
#endif
r += 0x00ffffff;
return r;
}
}
else {
// 0x0019999e is the number that can be multiplied
// by 10 to give 0x00ffffff
// while the value is below 0x0019999e we can
// multiply it by 10, up to 7 times, increasing
// the multiplier
while(m < 7 && n < (calculated_number)0x0019999e) {
n *= 10;
m++;
}
// the value was small enough and we multiplied it
// so we add a divider to unpack it
r += (0 << 30) + (m << 27); // the divider m
}
#ifdef STORAGE_WITH_MATH
// without this there are rounding problems
// example: 0.9 becomes 0.89
r += lrint((double) n);
#else
r += (storage_number)n;
#endif
return r;
}
calculated_number unpack_storage_number(storage_number value) {
if(!value) return 0;
int sign = 0, exp = 0;
int factor = 10;
// bit 32 = 0:positive, 1:negative
if(unlikely(value & (1 << 31)))
sign = 1;
// bit 31 = 0:divide, 1:multiply
if(unlikely(value & (1 << 30)))
exp = 1;
// bit 27 SN_EXISTS_100
if(unlikely(value & (1 << 26)))
factor = 100;
// bit 26 SN_EXISTS_RESET
// bit 25 SN_EXISTS
// bit 30, 29, 28 = (multiplier or divider) 0-7 (8 total)
int mul = (value & ((1<<29)|(1<<28)|(1<<27))) >> 27;
// bit 24 to bit 1 = the value, so remove all other bits
value ^= value & ((1<<31)|(1<<30)|(1<<29)|(1<<28)|(1<<27)|(1<<26)|(1<<25)|(1<<24));
calculated_number n = value;
// fprintf(stderr, "UNPACK: %08X, sign = %d, exp = %d, mul = %d, factor = %d, n = " CALCULATED_NUMBER_FORMAT "\n", value, sign, exp, mul, factor, n);
if(exp) {
for(; mul; mul--)
n *= factor;
}
else {
for( ; mul ; mul--)
n /= 10;
}
if(sign) n = -n;
return n;
}
/*
int print_calculated_number(char *str, calculated_number value)
{
char *wstr = str;
int sign = (value < 0) ? 1 : 0;
if(sign) value = -value;
#ifdef STORAGE_WITH_MATH
// without llrintl() there are rounding problems
// for example 0.9 becomes 0.89
unsigned long long uvalue = (unsigned long long int) llrintl(value * (calculated_number)100000);
#else
unsigned long long uvalue = value * (calculated_number)100000;
#endif
wstr = print_number_llu_r_smart(str, uvalue);
// make sure we have 6 bytes at least
while((wstr - str) < 6) *wstr++ = '0';
// put the sign back
if(sign) *wstr++ = '-';
// reverse it
char *begin = str, *end = --wstr, aux;
while (end > begin) aux = *end, *end-- = *begin, *begin++ = aux;
// wstr--;
// strreverse(str, wstr);
// remove trailing zeros
int decimal = 5;
while(decimal > 0 && *wstr == '0') {
*wstr-- = '\0';
decimal--;
}
// terminate it, one position to the right
// to let space for a dot
wstr[2] = '\0';
// make space for the dot
int i;
for(i = 0; i < decimal ;i++) {
wstr[1] = wstr[0];
wstr--;
}
// put the dot
if(wstr[2] == '\0') { wstr[1] = '\0'; decimal--; }
else wstr[1] = '.';
// return the buffer length
return (int) ((wstr - str) + 2 + decimal );
}
*/
int print_calculated_number(char *str, calculated_number value) {
// info("printing number " CALCULATED_NUMBER_FORMAT, value);
char integral_str[50], fractional_str[50];
char *wstr = str;
if(unlikely(value < 0)) {
*wstr++ = '-';
value = -value;
}
calculated_number integral, fractional;
#ifdef STORAGE_WITH_MATH
fractional = calculated_number_modf(value, &integral) * 10000000.0;
#else
fractional = ((unsigned long long)(value * 10000000ULL) % 10000000ULL);
#endif
unsigned long long integral_int = (unsigned long long)integral;
unsigned long long fractional_int = (unsigned long long)calculated_number_llrint(fractional);
if(unlikely(fractional_int >= 10000000)) {
integral_int += 1;
fractional_int -= 10000000;
}
// info("integral " CALCULATED_NUMBER_FORMAT " (%llu), fractional " CALCULATED_NUMBER_FORMAT " (%llu)", integral, integral_int, fractional, fractional_int);
char *istre;
if(unlikely(integral_int == 0)) {
integral_str[0] = '0';
istre = &integral_str[1];
}
else
// convert the integral part to string (reversed)
istre = print_number_llu_r_smart(integral_str, integral_int);
// copy reversed the integral string
istre--;
while( istre >= integral_str ) *wstr++ = *istre--;
if(likely(fractional_int != 0)) {
// add a dot
*wstr++ = '.';
// convert the fractional part to string (reversed)
char *fstre = print_number_llu_r_smart(fractional_str, fractional_int);
// prepend zeros to reach 7 digits length
int decimal = 7;
int len = (int)(fstre - fractional_str);
while(len < decimal) {
*wstr++ = '0';
len++;
}
char *begin = fractional_str;
while(begin < fstre && *begin == '0') begin++;
// copy reversed the fractional string
fstre--;
while( fstre >= begin ) *wstr++ = *fstre--;
}
*wstr = '\0';
// info("printed number '%s'", str);
return (int)(wstr - str);
}