mirror of
https://github.com/netdata/netdata.git
synced 2025-04-23 21:10:22 +00:00

* initial webrtc setup * missing files * rewrite of webrtc integration * initialization and cleanup of webrtc connections * make it compile without libdatachannel * add missing webrtc_initialize() function when webrtc is not enabled * make c++17 optional * add build/m4/ax_compiler_vendor.m4 * add ax_cxx_compile_stdcxx.m4 * added new m4 files to makefile.am * id all webrtc connections * show warning when webrtc is disabled * fixed message * moved all webrtc error checking inside webrtc.cpp * working webrtc connection establishment and cleanup * remove obsolete code * rewrote webrtc code in C to remove dependency for c++17 * fixed left-over reference * detect binary and text messages * minor fix * naming of webrtc threads * added webrtc configuration * fix for thread_get_name_np() * smaller web_client memory footprint * universal web clients cache * free web clients every 100 uses * webrtc is now enabled by default only when compiled with internal checks * webrtc responses to /api/ requests, including LZ4 compression * fix for binary and text messages * web_client_cache is now global * unification of the internal web server API, for web requests, aclk request, webrtc requests * more cleanup and unification of web client timings * fixed compiler warnings * update sent and received bytes * eliminated of almost all big buffers in web client * registry now uses the new json generation * cookies are now an array; fixed redirects * fix redirects, again * write cookies directly to the header buffer, eliminating the need for cookie structures in web client * reset the has_cookies flag * gathered all web client cleanup to one function * fixes redirects * added summary.globals in /api/v2/data response * ars to arc in /api/v2/data * properly handle host impersonation * set the context of mem.numa_nodes
3779 lines
144 KiB
C
3779 lines
144 KiB
C
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "query.h"
|
|
#include "web/api/formatters/rrd2json.h"
|
|
#include "rrdr.h"
|
|
|
|
#include "average/average.h"
|
|
#include "countif/countif.h"
|
|
#include "incremental_sum/incremental_sum.h"
|
|
#include "max/max.h"
|
|
#include "median/median.h"
|
|
#include "min/min.h"
|
|
#include "sum/sum.h"
|
|
#include "stddev/stddev.h"
|
|
#include "ses/ses.h"
|
|
#include "des/des.h"
|
|
#include "percentile/percentile.h"
|
|
#include "trimmed_mean/trimmed_mean.h"
|
|
|
|
#define POINTS_TO_EXPAND_QUERY 5
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static struct {
|
|
const char *name;
|
|
uint32_t hash;
|
|
RRDR_TIME_GROUPING value;
|
|
RRDR_TIME_GROUPING add_flush;
|
|
|
|
// One time initialization for the module.
|
|
// This is called once, when netdata starts.
|
|
void (*init)(void);
|
|
|
|
// Allocate all required structures for a query.
|
|
// This is called once for each netdata query.
|
|
void (*create)(struct rrdresult *r, const char *options);
|
|
|
|
// Cleanup collected values, but don't destroy the structures.
|
|
// This is called when the query engine switches dimensions,
|
|
// as part of the same query (so same chart, switching metric).
|
|
void (*reset)(struct rrdresult *r);
|
|
|
|
// Free all resources allocated for the query.
|
|
void (*free)(struct rrdresult *r);
|
|
|
|
// Add a single value into the calculation.
|
|
// The module may decide to cache it, or use it in the fly.
|
|
void (*add)(struct rrdresult *r, NETDATA_DOUBLE value);
|
|
|
|
// Generate a single result for the values added so far.
|
|
// More values and points may be requested later.
|
|
// It is up to the module to reset its internal structures
|
|
// when flushing it (so for a few modules it may be better to
|
|
// continue after a flush as if nothing changed, for others a
|
|
// cleanup of the internal structures may be required).
|
|
NETDATA_DOUBLE (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
|
|
|
|
TIER_QUERY_FETCH tier_query_fetch;
|
|
} api_v1_data_groups[] = {
|
|
{.name = "average",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.add_flush = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= tg_average_create,
|
|
.reset = tg_average_reset,
|
|
.free = tg_average_free,
|
|
.add = tg_average_add,
|
|
.flush = tg_average_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "avg", // alias on 'average'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.add_flush = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= tg_average_create,
|
|
.reset = tg_average_reset,
|
|
.free = tg_average_free,
|
|
.add = tg_average_add,
|
|
.flush = tg_average_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "mean", // alias on 'average'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_AVERAGE,
|
|
.add_flush = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= tg_average_create,
|
|
.reset = tg_average_reset,
|
|
.free = tg_average_free,
|
|
.add = tg_average_add,
|
|
.flush = tg_average_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean1",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN1,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_1,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean2",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN2,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_2,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean3",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN3,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_3,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean5",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_5,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean10",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN10,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_10,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean15",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN15,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_15,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean20",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN20,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_20,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean25",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN25,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_25,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-mean",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.add_flush = RRDR_GROUPING_TRIMMED_MEAN,
|
|
.init = NULL,
|
|
.create= tg_trimmed_mean_create_5,
|
|
.reset = tg_trimmed_mean_reset,
|
|
.free = tg_trimmed_mean_free,
|
|
.add = tg_trimmed_mean_add,
|
|
.flush = tg_trimmed_mean_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "incremental_sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.add_flush = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= tg_incremental_sum_create,
|
|
.reset = tg_incremental_sum_reset,
|
|
.free = tg_incremental_sum_free,
|
|
.add = tg_incremental_sum_add,
|
|
.flush = tg_incremental_sum_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "incremental-sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.add_flush = RRDR_GROUPING_INCREMENTAL_SUM,
|
|
.init = NULL,
|
|
.create= tg_incremental_sum_create,
|
|
.reset = tg_incremental_sum_reset,
|
|
.free = tg_incremental_sum_free,
|
|
.add = tg_incremental_sum_add,
|
|
.flush = tg_incremental_sum_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "median",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MEDIAN,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median1",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN1,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_1,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median2",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN2,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_2,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median3",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN3,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_3,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median5",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN5,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_5,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median10",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN10,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_10,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median15",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN15,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_15,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median20",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN20,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_20,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median25",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN25,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_25,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "trimmed-median",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_TRIMMED_MEDIAN5,
|
|
.add_flush = RRDR_GROUPING_MEDIAN,
|
|
.init = NULL,
|
|
.create= tg_median_create_trimmed_5,
|
|
.reset = tg_median_reset,
|
|
.free = tg_median_free,
|
|
.add = tg_median_add,
|
|
.flush = tg_median_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile25",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE25,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_25,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile50",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE50,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_50,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile75",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE75,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_75,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile80",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE80,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_80,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile90",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE90,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_90,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile95",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_95,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile97",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE97,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_97,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile98",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE98,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_98,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile99",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE99,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_99,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "percentile",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_PERCENTILE,
|
|
.add_flush = RRDR_GROUPING_PERCENTILE,
|
|
.init = NULL,
|
|
.create= tg_percentile_create_95,
|
|
.reset = tg_percentile_reset,
|
|
.free = tg_percentile_free,
|
|
.add = tg_percentile_add,
|
|
.flush = tg_percentile_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "min",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MIN,
|
|
.add_flush = RRDR_GROUPING_MIN,
|
|
.init = NULL,
|
|
.create= tg_min_create,
|
|
.reset = tg_min_reset,
|
|
.free = tg_min_free,
|
|
.add = tg_min_add,
|
|
.flush = tg_min_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_MIN
|
|
},
|
|
{.name = "max",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_MAX,
|
|
.add_flush = RRDR_GROUPING_MAX,
|
|
.init = NULL,
|
|
.create= tg_max_create,
|
|
.reset = tg_max_reset,
|
|
.free = tg_max_free,
|
|
.add = tg_max_add,
|
|
.flush = tg_max_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_MAX
|
|
},
|
|
{.name = "sum",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SUM,
|
|
.add_flush = RRDR_GROUPING_SUM,
|
|
.init = NULL,
|
|
.create= tg_sum_create,
|
|
.reset = tg_sum_reset,
|
|
.free = tg_sum_free,
|
|
.add = tg_sum_add,
|
|
.flush = tg_sum_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_SUM
|
|
},
|
|
|
|
// standard deviation
|
|
{.name = "stddev",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_STDDEV,
|
|
.add_flush = RRDR_GROUPING_STDDEV,
|
|
.init = NULL,
|
|
.create= tg_stddev_create,
|
|
.reset = tg_stddev_reset,
|
|
.free = tg_stddev_free,
|
|
.add = tg_stddev_add,
|
|
.flush = tg_stddev_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "cv", // coefficient variation is calculated by stddev
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.add_flush = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= tg_stddev_create, // not an error, stddev calculates this too
|
|
.reset = tg_stddev_reset, // not an error, stddev calculates this too
|
|
.free = tg_stddev_free, // not an error, stddev calculates this too
|
|
.add = tg_stddev_add, // not an error, stddev calculates this too
|
|
.flush = tg_stddev_coefficient_of_variation_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "rsd", // alias of 'cv'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_CV,
|
|
.add_flush = RRDR_GROUPING_CV,
|
|
.init = NULL,
|
|
.create= tg_stddev_create, // not an error, stddev calculates this too
|
|
.reset = tg_stddev_reset, // not an error, stddev calculates this too
|
|
.free = tg_stddev_free, // not an error, stddev calculates this too
|
|
.add = tg_stddev_add, // not an error, stddev calculates this too
|
|
.flush = tg_stddev_coefficient_of_variation_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
// single exponential smoothing
|
|
{.name = "ses",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.add_flush = RRDR_GROUPING_SES,
|
|
.init = tg_ses_init,
|
|
.create= tg_ses_create,
|
|
.reset = tg_ses_reset,
|
|
.free = tg_ses_free,
|
|
.add = tg_ses_add,
|
|
.flush = tg_ses_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "ema", // alias for 'ses'
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.add_flush = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= tg_ses_create,
|
|
.reset = tg_ses_reset,
|
|
.free = tg_ses_free,
|
|
.add = tg_ses_add,
|
|
.flush = tg_ses_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
{.name = "ewma", // alias for ses
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_SES,
|
|
.add_flush = RRDR_GROUPING_SES,
|
|
.init = NULL,
|
|
.create= tg_ses_create,
|
|
.reset = tg_ses_reset,
|
|
.free = tg_ses_free,
|
|
.add = tg_ses_add,
|
|
.flush = tg_ses_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
// double exponential smoothing
|
|
{.name = "des",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_DES,
|
|
.add_flush = RRDR_GROUPING_DES,
|
|
.init = tg_des_init,
|
|
.create= tg_des_create,
|
|
.reset = tg_des_reset,
|
|
.free = tg_des_free,
|
|
.add = tg_des_add,
|
|
.flush = tg_des_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
{.name = "countif",
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_COUNTIF,
|
|
.add_flush = RRDR_GROUPING_COUNTIF,
|
|
.init = NULL,
|
|
.create= tg_countif_create,
|
|
.reset = tg_countif_reset,
|
|
.free = tg_countif_free,
|
|
.add = tg_countif_add,
|
|
.flush = tg_countif_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
},
|
|
|
|
// terminator
|
|
{.name = NULL,
|
|
.hash = 0,
|
|
.value = RRDR_GROUPING_UNDEFINED,
|
|
.add_flush = RRDR_GROUPING_AVERAGE,
|
|
.init = NULL,
|
|
.create= tg_average_create,
|
|
.reset = tg_average_reset,
|
|
.free = tg_average_free,
|
|
.add = tg_average_add,
|
|
.flush = tg_average_flush,
|
|
.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE
|
|
}
|
|
};
|
|
|
|
void time_grouping_init(void) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
|
|
|
|
if(api_v1_data_groups[i].init)
|
|
api_v1_data_groups[i].init();
|
|
}
|
|
}
|
|
|
|
const char *time_grouping_method2string(RRDR_TIME_GROUPING group) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++) {
|
|
if(api_v1_data_groups[i].value == group) {
|
|
return api_v1_data_groups[i].name;
|
|
}
|
|
}
|
|
|
|
return "unknown-group-method";
|
|
}
|
|
|
|
RRDR_TIME_GROUPING time_grouping_parse(const char *name, RRDR_TIME_GROUPING def) {
|
|
int i;
|
|
|
|
uint32_t hash = simple_hash(name);
|
|
for(i = 0; api_v1_data_groups[i].name ; i++)
|
|
if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
|
|
return api_v1_data_groups[i].value;
|
|
|
|
return def;
|
|
}
|
|
|
|
const char *time_grouping_tostring(RRDR_TIME_GROUPING group) {
|
|
int i;
|
|
|
|
for(i = 0; api_v1_data_groups[i].name ; i++)
|
|
if(unlikely(group == api_v1_data_groups[i].value))
|
|
return api_v1_data_groups[i].name;
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
static void rrdr_set_grouping_function(RRDR *r, RRDR_TIME_GROUPING group_method) {
|
|
int i, found = 0;
|
|
for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
|
|
if(api_v1_data_groups[i].value == group_method) {
|
|
r->time_grouping.create = api_v1_data_groups[i].create;
|
|
r->time_grouping.reset = api_v1_data_groups[i].reset;
|
|
r->time_grouping.free = api_v1_data_groups[i].free;
|
|
r->time_grouping.add = api_v1_data_groups[i].add;
|
|
r->time_grouping.flush = api_v1_data_groups[i].flush;
|
|
r->time_grouping.tier_query_fetch = api_v1_data_groups[i].tier_query_fetch;
|
|
r->time_grouping.add_flush = api_v1_data_groups[i].add_flush;
|
|
found = 1;
|
|
}
|
|
}
|
|
if(!found) {
|
|
errno = 0;
|
|
internal_error(true, "QUERY: grouping method %u not found. Using 'average'", (unsigned int)group_method);
|
|
r->time_grouping.create = tg_average_create;
|
|
r->time_grouping.reset = tg_average_reset;
|
|
r->time_grouping.free = tg_average_free;
|
|
r->time_grouping.add = tg_average_add;
|
|
r->time_grouping.flush = tg_average_flush;
|
|
r->time_grouping.tier_query_fetch = TIER_QUERY_FETCH_AVERAGE;
|
|
r->time_grouping.add_flush = RRDR_GROUPING_AVERAGE;
|
|
}
|
|
}
|
|
|
|
static inline void time_grouping_add(RRDR *r, NETDATA_DOUBLE value, const RRDR_TIME_GROUPING add_flush) {
|
|
switch(add_flush) {
|
|
case RRDR_GROUPING_AVERAGE:
|
|
tg_average_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_MAX:
|
|
tg_max_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_MIN:
|
|
tg_min_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_MEDIAN:
|
|
tg_median_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_STDDEV:
|
|
case RRDR_GROUPING_CV:
|
|
tg_stddev_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_SUM:
|
|
tg_sum_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_COUNTIF:
|
|
tg_countif_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_TRIMMED_MEAN:
|
|
tg_trimmed_mean_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_PERCENTILE:
|
|
tg_percentile_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_SES:
|
|
tg_ses_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_DES:
|
|
tg_des_add(r, value);
|
|
break;
|
|
|
|
case RRDR_GROUPING_INCREMENTAL_SUM:
|
|
tg_incremental_sum_add(r, value);
|
|
break;
|
|
|
|
default:
|
|
r->time_grouping.add(r, value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline NETDATA_DOUBLE time_grouping_flush(RRDR *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr, const RRDR_TIME_GROUPING add_flush) {
|
|
switch(add_flush) {
|
|
case RRDR_GROUPING_AVERAGE:
|
|
return tg_average_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_MAX:
|
|
return tg_max_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_MIN:
|
|
return tg_min_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_MEDIAN:
|
|
return tg_median_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_STDDEV:
|
|
return tg_stddev_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_CV:
|
|
return tg_stddev_coefficient_of_variation_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_SUM:
|
|
return tg_sum_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_COUNTIF:
|
|
return tg_countif_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_TRIMMED_MEAN:
|
|
return tg_trimmed_mean_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_PERCENTILE:
|
|
return tg_percentile_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_SES:
|
|
return tg_ses_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_DES:
|
|
return tg_des_flush(r, rrdr_value_options_ptr);
|
|
|
|
case RRDR_GROUPING_INCREMENTAL_SUM:
|
|
return tg_incremental_sum_flush(r, rrdr_value_options_ptr);
|
|
|
|
default:
|
|
return r->time_grouping.flush(r, rrdr_value_options_ptr);
|
|
}
|
|
}
|
|
|
|
RRDR_GROUP_BY group_by_parse(char *s) {
|
|
RRDR_GROUP_BY group_by = RRDR_GROUP_BY_NONE;
|
|
|
|
while(s) {
|
|
char *key = strsep_skip_consecutive_separators(&s, ",| ");
|
|
if (!key || !*key) continue;
|
|
|
|
if (strcmp(key, "selected") == 0)
|
|
group_by |= RRDR_GROUP_BY_SELECTED;
|
|
|
|
if (strcmp(key, "dimension") == 0)
|
|
group_by |= RRDR_GROUP_BY_DIMENSION;
|
|
|
|
if (strcmp(key, "instance") == 0)
|
|
group_by |= RRDR_GROUP_BY_INSTANCE;
|
|
|
|
if (strcmp(key, "percentage-of-instance") == 0)
|
|
group_by |= RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE;
|
|
|
|
if (strcmp(key, "label") == 0)
|
|
group_by |= RRDR_GROUP_BY_LABEL;
|
|
|
|
if (strcmp(key, "node") == 0)
|
|
group_by |= RRDR_GROUP_BY_NODE;
|
|
|
|
if (strcmp(key, "context") == 0)
|
|
group_by |= RRDR_GROUP_BY_CONTEXT;
|
|
|
|
if (strcmp(key, "units") == 0)
|
|
group_by |= RRDR_GROUP_BY_UNITS;
|
|
}
|
|
|
|
if((group_by & RRDR_GROUP_BY_SELECTED) && (group_by & ~RRDR_GROUP_BY_SELECTED)) {
|
|
internal_error(true, "group-by given by query has 'selected' together with more groupings");
|
|
group_by = RRDR_GROUP_BY_SELECTED; // remove all other groupings
|
|
}
|
|
|
|
if(group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
|
|
group_by = RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE; // remove all other groupings
|
|
|
|
return group_by;
|
|
}
|
|
|
|
void buffer_json_group_by_to_array(BUFFER *wb, RRDR_GROUP_BY group_by) {
|
|
if(group_by == RRDR_GROUP_BY_NONE)
|
|
buffer_json_add_array_item_string(wb, "none");
|
|
else {
|
|
if (group_by & RRDR_GROUP_BY_DIMENSION)
|
|
buffer_json_add_array_item_string(wb, "dimension");
|
|
|
|
if (group_by & RRDR_GROUP_BY_INSTANCE)
|
|
buffer_json_add_array_item_string(wb, "instance");
|
|
|
|
if (group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
|
|
buffer_json_add_array_item_string(wb, "percentage-of-instance");
|
|
|
|
if (group_by & RRDR_GROUP_BY_LABEL)
|
|
buffer_json_add_array_item_string(wb, "label");
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE)
|
|
buffer_json_add_array_item_string(wb, "node");
|
|
|
|
if (group_by & RRDR_GROUP_BY_CONTEXT)
|
|
buffer_json_add_array_item_string(wb, "context");
|
|
|
|
if (group_by & RRDR_GROUP_BY_UNITS)
|
|
buffer_json_add_array_item_string(wb, "units");
|
|
|
|
if (group_by & RRDR_GROUP_BY_SELECTED)
|
|
buffer_json_add_array_item_string(wb, "selected");
|
|
}
|
|
}
|
|
|
|
RRDR_GROUP_BY_FUNCTION group_by_aggregate_function_parse(const char *s) {
|
|
if(strcmp(s, "average") == 0)
|
|
return RRDR_GROUP_BY_FUNCTION_AVERAGE;
|
|
|
|
if(strcmp(s, "avg") == 0)
|
|
return RRDR_GROUP_BY_FUNCTION_AVERAGE;
|
|
|
|
if(strcmp(s, "min") == 0)
|
|
return RRDR_GROUP_BY_FUNCTION_MIN;
|
|
|
|
if(strcmp(s, "max") == 0)
|
|
return RRDR_GROUP_BY_FUNCTION_MAX;
|
|
|
|
if(strcmp(s, "sum") == 0)
|
|
return RRDR_GROUP_BY_FUNCTION_SUM;
|
|
|
|
return RRDR_GROUP_BY_FUNCTION_AVERAGE;
|
|
}
|
|
|
|
const char *group_by_aggregate_function_to_string(RRDR_GROUP_BY_FUNCTION group_by_function) {
|
|
switch(group_by_function) {
|
|
default:
|
|
case RRDR_GROUP_BY_FUNCTION_AVERAGE:
|
|
return "average";
|
|
|
|
case RRDR_GROUP_BY_FUNCTION_MIN:
|
|
return "min";
|
|
|
|
case RRDR_GROUP_BY_FUNCTION_MAX:
|
|
return "max";
|
|
|
|
case RRDR_GROUP_BY_FUNCTION_SUM:
|
|
return "sum";
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// helpers to find our way in RRDR
|
|
|
|
static inline RRDR_VALUE_FLAGS *UNUSED_FUNCTION(rrdr_line_options)(RRDR *r, long rrdr_line) {
|
|
return &r->o[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline NETDATA_DOUBLE *UNUSED_FUNCTION(rrdr_line_values)(RRDR *r, long rrdr_line) {
|
|
return &r->v[ rrdr_line * r->d ];
|
|
}
|
|
|
|
static inline long rrdr_line_init(RRDR *r __maybe_unused, time_t t __maybe_unused, long rrdr_line) {
|
|
rrdr_line++;
|
|
|
|
internal_fatal(rrdr_line >= (long)r->n,
|
|
"QUERY: requested to step above RRDR size for query '%s'",
|
|
r->internal.qt->id);
|
|
|
|
internal_fatal(r->t[rrdr_line] != t,
|
|
"QUERY: wrong timestamp at RRDR line %ld, expected %ld, got %ld, of query '%s'",
|
|
rrdr_line, r->t[rrdr_line], t, r->internal.qt->id);
|
|
|
|
return rrdr_line;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// tier management
|
|
|
|
static bool query_metric_is_valid_tier(QUERY_METRIC *qm, size_t tier) {
|
|
if(!qm->tiers[tier].db_metric_handle || !qm->tiers[tier].db_first_time_s || !qm->tiers[tier].db_last_time_s || !qm->tiers[tier].db_update_every_s)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static size_t query_metric_first_working_tier(QUERY_METRIC *qm) {
|
|
for(size_t tier = 0; tier < storage_tiers ; tier++) {
|
|
|
|
// find the db time-range for this tier for all metrics
|
|
STORAGE_METRIC_HANDLE *db_metric_handle = qm->tiers[tier].db_metric_handle;
|
|
time_t first_time_s = qm->tiers[tier].db_first_time_s;
|
|
time_t last_time_s = qm->tiers[tier].db_last_time_s;
|
|
time_t update_every_s = qm->tiers[tier].db_update_every_s;
|
|
|
|
if(!db_metric_handle || !first_time_s || !last_time_s || !update_every_s)
|
|
continue;
|
|
|
|
return tier;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long query_plan_points_coverage_weight(time_t db_first_time_s, time_t db_last_time_s, time_t db_update_every_s, time_t after_wanted, time_t before_wanted, size_t points_wanted, size_t tier __maybe_unused) {
|
|
if(db_first_time_s == 0 ||
|
|
db_last_time_s == 0 ||
|
|
db_update_every_s == 0 ||
|
|
db_first_time_s > before_wanted ||
|
|
db_last_time_s < after_wanted)
|
|
return -LONG_MAX;
|
|
|
|
long long common_first_t = MAX(db_first_time_s, after_wanted);
|
|
long long common_last_t = MIN(db_last_time_s, before_wanted);
|
|
|
|
long long time_coverage = (common_last_t - common_first_t) * 1000000LL / (before_wanted - after_wanted);
|
|
long long points_wanted_in_coverage = (long long)points_wanted * time_coverage / 1000000LL;
|
|
|
|
long long points_available = (common_last_t - common_first_t) / db_update_every_s;
|
|
long long points_delta = (long)(points_available - points_wanted_in_coverage);
|
|
long long points_coverage = (points_delta < 0) ? (long)(points_available * time_coverage / points_wanted_in_coverage) : time_coverage;
|
|
|
|
// a way to benefit higher tiers
|
|
// points_coverage += (long)tier * 10000;
|
|
|
|
if(points_available <= 0)
|
|
return -LONG_MAX;
|
|
|
|
return (long)(points_coverage + (25000LL * tier)); // 2.5% benefit for each higher tier
|
|
}
|
|
|
|
static size_t query_metric_best_tier_for_timeframe(QUERY_METRIC *qm, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
|
|
if(unlikely(storage_tiers < 2))
|
|
return 0;
|
|
|
|
if(unlikely(after_wanted == before_wanted || points_wanted <= 0))
|
|
return query_metric_first_working_tier(qm);
|
|
|
|
time_t min_first_time_s = 0;
|
|
time_t max_last_time_s = 0;
|
|
|
|
for(size_t tier = 0; tier < storage_tiers ; tier++) {
|
|
time_t first_time_s = qm->tiers[tier].db_first_time_s;
|
|
time_t last_time_s = qm->tiers[tier].db_last_time_s;
|
|
|
|
if(!min_first_time_s || (first_time_s && first_time_s < min_first_time_s))
|
|
min_first_time_s = first_time_s;
|
|
|
|
if(!max_last_time_s || (last_time_s && last_time_s > max_last_time_s))
|
|
max_last_time_s = last_time_s;
|
|
}
|
|
|
|
for(size_t tier = 0; tier < storage_tiers ; tier++) {
|
|
|
|
// find the db time-range for this tier for all metrics
|
|
STORAGE_METRIC_HANDLE *db_metric_handle = qm->tiers[tier].db_metric_handle;
|
|
time_t first_time_s = qm->tiers[tier].db_first_time_s;
|
|
time_t last_time_s = qm->tiers[tier].db_last_time_s;
|
|
time_t update_every_s = qm->tiers[tier].db_update_every_s;
|
|
|
|
if( !db_metric_handle ||
|
|
!first_time_s ||
|
|
!last_time_s ||
|
|
!update_every_s ||
|
|
first_time_s > before_wanted ||
|
|
last_time_s < after_wanted
|
|
) {
|
|
qm->tiers[tier].weight = -LONG_MAX;
|
|
continue;
|
|
}
|
|
|
|
internal_fatal(first_time_s > before_wanted || last_time_s < after_wanted, "QUERY: invalid db durations");
|
|
|
|
qm->tiers[tier].weight = query_plan_points_coverage_weight(
|
|
min_first_time_s, max_last_time_s, update_every_s,
|
|
after_wanted, before_wanted, points_wanted, tier);
|
|
}
|
|
|
|
size_t best_tier = 0;
|
|
for(size_t tier = 1; tier < storage_tiers ; tier++) {
|
|
if(qm->tiers[tier].weight >= qm->tiers[best_tier].weight)
|
|
best_tier = tier;
|
|
}
|
|
|
|
return best_tier;
|
|
}
|
|
|
|
static size_t rrddim_find_best_tier_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
|
|
if(unlikely(storage_tiers < 2))
|
|
return 0;
|
|
|
|
if(unlikely(after_wanted == before_wanted || points_wanted <= 0)) {
|
|
internal_error(true, "QUERY: '%s' has invalid params to tier calculation", qt->id);
|
|
return 0;
|
|
}
|
|
|
|
long weight[storage_tiers];
|
|
|
|
for(size_t tier = 0; tier < storage_tiers ; tier++) {
|
|
|
|
time_t common_first_time_s = 0;
|
|
time_t common_last_time_s = 0;
|
|
time_t common_update_every_s = 0;
|
|
|
|
// find the db time-range for this tier for all metrics
|
|
for(size_t i = 0, used = qt->query.used; i < used ; i++) {
|
|
QUERY_METRIC *qm = query_metric(qt, i);
|
|
|
|
time_t first_time_s = qm->tiers[tier].db_first_time_s;
|
|
time_t last_time_s = qm->tiers[tier].db_last_time_s;
|
|
time_t update_every_s = qm->tiers[tier].db_update_every_s;
|
|
|
|
if(!first_time_s || !last_time_s || !update_every_s)
|
|
continue;
|
|
|
|
if(!common_first_time_s)
|
|
common_first_time_s = first_time_s;
|
|
else
|
|
common_first_time_s = MIN(first_time_s, common_first_time_s);
|
|
|
|
if(!common_last_time_s)
|
|
common_last_time_s = last_time_s;
|
|
else
|
|
common_last_time_s = MAX(last_time_s, common_last_time_s);
|
|
|
|
if(!common_update_every_s)
|
|
common_update_every_s = update_every_s;
|
|
else
|
|
common_update_every_s = MIN(update_every_s, common_update_every_s);
|
|
}
|
|
|
|
weight[tier] = query_plan_points_coverage_weight(common_first_time_s, common_last_time_s, common_update_every_s, after_wanted, before_wanted, points_wanted, tier);
|
|
}
|
|
|
|
size_t best_tier = 0;
|
|
for(size_t tier = 1; tier < storage_tiers ; tier++) {
|
|
if(weight[tier] >= weight[best_tier])
|
|
best_tier = tier;
|
|
}
|
|
|
|
if(weight[best_tier] == -LONG_MAX)
|
|
best_tier = 0;
|
|
|
|
return best_tier;
|
|
}
|
|
|
|
static time_t rrdset_find_natural_update_every_for_timeframe(QUERY_TARGET *qt, time_t after_wanted, time_t before_wanted, size_t points_wanted, RRDR_OPTIONS options, size_t tier) {
|
|
size_t best_tier;
|
|
if((options & RRDR_OPTION_SELECTED_TIER) && tier < storage_tiers)
|
|
best_tier = tier;
|
|
else
|
|
best_tier = rrddim_find_best_tier_for_timeframe(qt, after_wanted, before_wanted, points_wanted);
|
|
|
|
// find the db minimum update every for this tier for all metrics
|
|
time_t common_update_every_s = default_rrd_update_every;
|
|
for(size_t i = 0, used = qt->query.used; i < used ; i++) {
|
|
QUERY_METRIC *qm = query_metric(qt, i);
|
|
|
|
time_t update_every_s = qm->tiers[best_tier].db_update_every_s;
|
|
|
|
if(!i)
|
|
common_update_every_s = update_every_s;
|
|
else
|
|
common_update_every_s = MIN(update_every_s, common_update_every_s);
|
|
}
|
|
|
|
return common_update_every_s;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// query ops
|
|
|
|
typedef struct query_point {
|
|
STORAGE_POINT sp;
|
|
NETDATA_DOUBLE value;
|
|
bool added;
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
size_t id;
|
|
#endif
|
|
} QUERY_POINT;
|
|
|
|
QUERY_POINT QUERY_POINT_EMPTY = {
|
|
.sp = STORAGE_POINT_UNSET,
|
|
.value = NAN,
|
|
.added = false,
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
.id = 0,
|
|
#endif
|
|
};
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
#define query_point_set_id(point, point_id) (point).id = point_id
|
|
#else
|
|
#define query_point_set_id(point, point_id) debug_dummy()
|
|
#endif
|
|
|
|
typedef struct query_engine_ops {
|
|
// configuration
|
|
RRDR *r;
|
|
QUERY_METRIC *qm;
|
|
time_t view_update_every;
|
|
time_t query_granularity;
|
|
TIER_QUERY_FETCH tier_query_fetch;
|
|
|
|
// query planer
|
|
size_t current_plan;
|
|
time_t current_plan_expire_time;
|
|
time_t plan_expanded_after;
|
|
time_t plan_expanded_before;
|
|
|
|
// storage queries
|
|
size_t tier;
|
|
struct query_metric_tier *tier_ptr;
|
|
struct storage_engine_query_handle *handle;
|
|
|
|
// aggregating points over time
|
|
size_t group_points_non_zero;
|
|
size_t group_points_added;
|
|
STORAGE_POINT group_point; // aggregates min, max, sum, count, anomaly count for each group point
|
|
STORAGE_POINT query_point; // aggregates min, max, sum, count, anomaly count across the whole query
|
|
RRDR_VALUE_FLAGS group_value_flags;
|
|
|
|
// statistics
|
|
size_t db_total_points_read;
|
|
size_t db_points_read_per_tier[RRD_STORAGE_TIERS];
|
|
|
|
struct {
|
|
time_t expanded_after;
|
|
time_t expanded_before;
|
|
struct storage_engine_query_handle handle;
|
|
bool initialized;
|
|
bool finalized;
|
|
} plans[QUERY_PLANS_MAX];
|
|
|
|
struct query_engine_ops *next;
|
|
} QUERY_ENGINE_OPS;
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// query planer
|
|
|
|
#define query_plan_should_switch_plan(ops, now) ((now) >= (ops)->current_plan_expire_time)
|
|
|
|
static size_t query_planer_expand_duration_in_points(time_t this_update_every, time_t next_update_every) {
|
|
|
|
time_t delta = this_update_every - next_update_every;
|
|
if(delta < 0) delta = -delta;
|
|
|
|
size_t points;
|
|
if(delta < this_update_every * POINTS_TO_EXPAND_QUERY)
|
|
points = POINTS_TO_EXPAND_QUERY;
|
|
else
|
|
points = (delta + this_update_every - 1) / this_update_every;
|
|
|
|
return points;
|
|
}
|
|
|
|
static void query_planer_initialize_plans(QUERY_ENGINE_OPS *ops) {
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
for(size_t p = 0; p < qm->plan.used ; p++) {
|
|
size_t tier = qm->plan.array[p].tier;
|
|
time_t update_every = qm->tiers[tier].db_update_every_s;
|
|
|
|
size_t points_to_add_to_after;
|
|
if(p > 0) {
|
|
// there is another plan before to this
|
|
|
|
size_t tier0 = qm->plan.array[p - 1].tier;
|
|
time_t update_every0 = qm->tiers[tier0].db_update_every_s;
|
|
|
|
points_to_add_to_after = query_planer_expand_duration_in_points(update_every, update_every0);
|
|
}
|
|
else
|
|
points_to_add_to_after = (tier == 0) ? 0 : POINTS_TO_EXPAND_QUERY;
|
|
|
|
size_t points_to_add_to_before;
|
|
if(p + 1 < qm->plan.used) {
|
|
// there is another plan after to this
|
|
|
|
size_t tier1 = qm->plan.array[p+1].tier;
|
|
time_t update_every1 = qm->tiers[tier1].db_update_every_s;
|
|
|
|
points_to_add_to_before = query_planer_expand_duration_in_points(update_every, update_every1);
|
|
}
|
|
else
|
|
points_to_add_to_before = POINTS_TO_EXPAND_QUERY;
|
|
|
|
time_t after = qm->plan.array[p].after - (time_t)(update_every * points_to_add_to_after);
|
|
time_t before = qm->plan.array[p].before + (time_t)(update_every * points_to_add_to_before);
|
|
|
|
ops->plans[p].expanded_after = after;
|
|
ops->plans[p].expanded_before = before;
|
|
|
|
ops->r->internal.qt->db.tiers[tier].queries++;
|
|
|
|
struct query_metric_tier *tier_ptr = &qm->tiers[tier];
|
|
STORAGE_ENGINE *eng = query_metric_storage_engine(ops->r->internal.qt, qm, tier);
|
|
storage_engine_query_init(eng->backend, tier_ptr->db_metric_handle, &ops->plans[p].handle,
|
|
after, before, ops->r->internal.qt->request.priority);
|
|
|
|
ops->plans[p].initialized = true;
|
|
ops->plans[p].finalized = false;
|
|
}
|
|
}
|
|
|
|
static void query_planer_finalize_plan(QUERY_ENGINE_OPS *ops, size_t plan_id) {
|
|
// QUERY_METRIC *qm = ops->qm;
|
|
|
|
if(ops->plans[plan_id].initialized && !ops->plans[plan_id].finalized) {
|
|
storage_engine_query_finalize(&ops->plans[plan_id].handle);
|
|
ops->plans[plan_id].initialized = false;
|
|
ops->plans[plan_id].finalized = true;
|
|
}
|
|
}
|
|
|
|
static void query_planer_finalize_remaining_plans(QUERY_ENGINE_OPS *ops) {
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
for(size_t p = 0; p < qm->plan.used ; p++)
|
|
query_planer_finalize_plan(ops, p);
|
|
}
|
|
|
|
static void query_planer_activate_plan(QUERY_ENGINE_OPS *ops, size_t plan_id, time_t overwrite_after __maybe_unused) {
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
internal_fatal(plan_id >= qm->plan.used, "QUERY: invalid plan_id given");
|
|
internal_fatal(!ops->plans[plan_id].initialized, "QUERY: plan has not been initialized");
|
|
internal_fatal(ops->plans[plan_id].finalized, "QUERY: plan has been finalized");
|
|
|
|
internal_fatal(qm->plan.array[plan_id].after > qm->plan.array[plan_id].before, "QUERY: flipped after/before");
|
|
|
|
ops->tier = qm->plan.array[plan_id].tier;
|
|
ops->tier_ptr = &qm->tiers[ops->tier];
|
|
ops->handle = &ops->plans[plan_id].handle;
|
|
ops->current_plan = plan_id;
|
|
|
|
if(plan_id + 1 < qm->plan.used && qm->plan.array[plan_id + 1].after < qm->plan.array[plan_id].before)
|
|
ops->current_plan_expire_time = qm->plan.array[plan_id + 1].after;
|
|
else
|
|
ops->current_plan_expire_time = qm->plan.array[plan_id].before;
|
|
|
|
ops->plan_expanded_after = ops->plans[plan_id].expanded_after;
|
|
ops->plan_expanded_before = ops->plans[plan_id].expanded_before;
|
|
}
|
|
|
|
static bool query_planer_next_plan(QUERY_ENGINE_OPS *ops, time_t now, time_t last_point_end_time) {
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
size_t old_plan = ops->current_plan;
|
|
|
|
time_t next_plan_before_time;
|
|
do {
|
|
ops->current_plan++;
|
|
|
|
if (ops->current_plan >= qm->plan.used) {
|
|
ops->current_plan = old_plan;
|
|
ops->current_plan_expire_time = ops->r->internal.qt->window.before;
|
|
// let the query run with current plan
|
|
// we will not switch it
|
|
return false;
|
|
}
|
|
|
|
next_plan_before_time = qm->plan.array[ops->current_plan].before;
|
|
} while(now >= next_plan_before_time || last_point_end_time >= next_plan_before_time);
|
|
|
|
if(!query_metric_is_valid_tier(qm, qm->plan.array[ops->current_plan].tier)) {
|
|
ops->current_plan = old_plan;
|
|
ops->current_plan_expire_time = ops->r->internal.qt->window.before;
|
|
return false;
|
|
}
|
|
|
|
query_planer_finalize_plan(ops, old_plan);
|
|
query_planer_activate_plan(ops, ops->current_plan, MIN(now, last_point_end_time));
|
|
return true;
|
|
}
|
|
|
|
static int compare_query_plan_entries_on_start_time(const void *a, const void *b) {
|
|
QUERY_PLAN_ENTRY *p1 = (QUERY_PLAN_ENTRY *)a;
|
|
QUERY_PLAN_ENTRY *p2 = (QUERY_PLAN_ENTRY *)b;
|
|
return (p1->after < p2->after)?-1:1;
|
|
}
|
|
|
|
static bool query_plan(QUERY_ENGINE_OPS *ops, time_t after_wanted, time_t before_wanted, size_t points_wanted) {
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
// put our selected tier as the first plan
|
|
size_t selected_tier;
|
|
bool switch_tiers = true;
|
|
|
|
if((ops->r->internal.qt->window.options & RRDR_OPTION_SELECTED_TIER)
|
|
&& ops->r->internal.qt->window.tier < storage_tiers
|
|
&& query_metric_is_valid_tier(qm, ops->r->internal.qt->window.tier)) {
|
|
selected_tier = ops->r->internal.qt->window.tier;
|
|
switch_tiers = false;
|
|
}
|
|
else {
|
|
selected_tier = query_metric_best_tier_for_timeframe(qm, after_wanted, before_wanted, points_wanted);
|
|
|
|
if(!query_metric_is_valid_tier(qm, selected_tier))
|
|
return false;
|
|
|
|
if(qm->tiers[selected_tier].db_first_time_s > before_wanted ||
|
|
qm->tiers[selected_tier].db_last_time_s < after_wanted)
|
|
return false;
|
|
}
|
|
|
|
qm->plan.used = 1;
|
|
qm->plan.array[0].tier = selected_tier;
|
|
qm->plan.array[0].after = (qm->tiers[selected_tier].db_first_time_s < after_wanted) ? after_wanted : qm->tiers[selected_tier].db_first_time_s;
|
|
qm->plan.array[0].before = (qm->tiers[selected_tier].db_last_time_s > before_wanted) ? before_wanted : qm->tiers[selected_tier].db_last_time_s;
|
|
|
|
if(switch_tiers) {
|
|
// the selected tier
|
|
time_t selected_tier_first_time_s = qm->plan.array[0].after;
|
|
time_t selected_tier_last_time_s = qm->plan.array[0].before;
|
|
|
|
// check if our selected tier can start the query
|
|
if (selected_tier_first_time_s > after_wanted) {
|
|
// we need some help from other tiers
|
|
for (size_t tr = (int)selected_tier + 1; tr < storage_tiers && qm->plan.used < QUERY_PLANS_MAX ; tr++) {
|
|
if(!query_metric_is_valid_tier(qm, tr))
|
|
continue;
|
|
|
|
// find the first time of this tier
|
|
time_t tier_first_time_s = qm->tiers[tr].db_first_time_s;
|
|
|
|
// can it help?
|
|
if (tier_first_time_s < selected_tier_first_time_s) {
|
|
// it can help us add detail at the beginning of the query
|
|
QUERY_PLAN_ENTRY t = {
|
|
.tier = tr,
|
|
.after = (tier_first_time_s < after_wanted) ? after_wanted : tier_first_time_s,
|
|
.before = selected_tier_first_time_s,
|
|
};
|
|
ops->plans[qm->plan.used].initialized = false;
|
|
ops->plans[qm->plan.used].finalized = false;
|
|
qm->plan.array[qm->plan.used++] = t;
|
|
|
|
internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
|
|
|
|
// prepare for the tier
|
|
selected_tier_first_time_s = t.after;
|
|
|
|
if (t.after <= after_wanted)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if our selected tier can finish the query
|
|
if (selected_tier_last_time_s < before_wanted) {
|
|
// we need some help from other tiers
|
|
for (int tr = (int)selected_tier - 1; tr >= 0 && qm->plan.used < QUERY_PLANS_MAX ; tr--) {
|
|
if(!query_metric_is_valid_tier(qm, tr))
|
|
continue;
|
|
|
|
// find the last time of this tier
|
|
time_t tier_last_time_s = qm->tiers[tr].db_last_time_s;
|
|
|
|
//buffer_sprintf(wb, ": EVAL BEFORE tier %d, %ld", tier, last_time_s);
|
|
|
|
// can it help?
|
|
if (tier_last_time_s > selected_tier_last_time_s) {
|
|
// it can help us add detail at the end of the query
|
|
QUERY_PLAN_ENTRY t = {
|
|
.tier = tr,
|
|
.after = selected_tier_last_time_s,
|
|
.before = (tier_last_time_s > before_wanted) ? before_wanted : tier_last_time_s,
|
|
};
|
|
ops->plans[qm->plan.used].initialized = false;
|
|
ops->plans[qm->plan.used].finalized = false;
|
|
qm->plan.array[qm->plan.used++] = t;
|
|
|
|
// prepare for the tier
|
|
selected_tier_last_time_s = t.before;
|
|
|
|
internal_fatal(!t.after || !t.before, "QUERY: invalid plan selected");
|
|
|
|
if (t.before >= before_wanted)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// sort the query plan
|
|
if(qm->plan.used > 1)
|
|
qsort(&qm->plan.array, qm->plan.used, sizeof(QUERY_PLAN_ENTRY), compare_query_plan_entries_on_start_time);
|
|
|
|
if(!query_metric_is_valid_tier(qm, qm->plan.array[0].tier))
|
|
return false;
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
for(size_t p = 0; p < qm->plan.used ;p++) {
|
|
internal_fatal(qm->plan.array[p].after > qm->plan.array[p].before, "QUERY: flipped after/before");
|
|
internal_fatal(qm->plan.array[p].after < after_wanted, "QUERY: too small plan first time");
|
|
internal_fatal(qm->plan.array[p].before > before_wanted, "QUERY: too big plan last time");
|
|
}
|
|
#endif
|
|
|
|
query_planer_initialize_plans(ops);
|
|
query_planer_activate_plan(ops, 0, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// dimension level query engine
|
|
|
|
#define query_interpolate_point(this_point, last_point, now) do { \
|
|
if(likely( \
|
|
/* the point to interpolate is more than 1s wide */ \
|
|
(this_point).sp.end_time_s - (this_point).sp.start_time_s > 1 \
|
|
\
|
|
/* the two points are exactly next to each other */ \
|
|
&& (last_point).sp.end_time_s == (this_point).sp.start_time_s \
|
|
\
|
|
/* both points are valid numbers */ \
|
|
&& netdata_double_isnumber((this_point).value) \
|
|
&& netdata_double_isnumber((last_point).value) \
|
|
\
|
|
)) { \
|
|
(this_point).value = (last_point).value + ((this_point).value - (last_point).value) * (1.0 - (NETDATA_DOUBLE)((this_point).sp.end_time_s - (now)) / (NETDATA_DOUBLE)((this_point).sp.end_time_s - (this_point).sp.start_time_s)); \
|
|
(this_point).sp.end_time_s = now; \
|
|
} \
|
|
} while(0)
|
|
|
|
#define query_add_point_to_group(r, point, ops, add_flush) do { \
|
|
if(likely(netdata_double_isnumber((point).value))) { \
|
|
if(likely(fpclassify((point).value) != FP_ZERO)) \
|
|
(ops)->group_points_non_zero++; \
|
|
\
|
|
if(unlikely((point).sp.flags & SN_FLAG_RESET)) \
|
|
(ops)->group_value_flags |= RRDR_VALUE_RESET; \
|
|
\
|
|
time_grouping_add(r, (point).value, add_flush); \
|
|
\
|
|
storage_point_merge_to((ops)->group_point, (point).sp); \
|
|
if(!(point).added) \
|
|
storage_point_merge_to((ops)->query_point, (point).sp); \
|
|
} \
|
|
\
|
|
(ops)->group_points_added++; \
|
|
} while(0)
|
|
|
|
static __thread QUERY_ENGINE_OPS *released_ops = NULL;
|
|
|
|
static void rrd2rrdr_query_ops_freeall(RRDR *r __maybe_unused) {
|
|
while(released_ops) {
|
|
QUERY_ENGINE_OPS *ops = released_ops;
|
|
released_ops = ops->next;
|
|
|
|
onewayalloc_freez(r->internal.owa, ops);
|
|
}
|
|
}
|
|
|
|
static void rrd2rrdr_query_ops_release(QUERY_ENGINE_OPS *ops) {
|
|
if(!ops) return;
|
|
|
|
ops->next = released_ops;
|
|
released_ops = ops;
|
|
}
|
|
|
|
static QUERY_ENGINE_OPS *rrd2rrdr_query_ops_get(RRDR *r) {
|
|
QUERY_ENGINE_OPS *ops;
|
|
if(released_ops) {
|
|
ops = released_ops;
|
|
released_ops = ops->next;
|
|
}
|
|
else {
|
|
ops = onewayalloc_mallocz(r->internal.owa, sizeof(QUERY_ENGINE_OPS));
|
|
}
|
|
|
|
memset(ops, 0, sizeof(*ops));
|
|
return ops;
|
|
}
|
|
|
|
static QUERY_ENGINE_OPS *rrd2rrdr_query_ops_prep(RRDR *r, size_t query_metric_id) {
|
|
QUERY_TARGET *qt = r->internal.qt;
|
|
|
|
QUERY_ENGINE_OPS *ops = rrd2rrdr_query_ops_get(r);
|
|
*ops = (QUERY_ENGINE_OPS) {
|
|
.r = r,
|
|
.qm = query_metric(qt, query_metric_id),
|
|
.tier_query_fetch = r->time_grouping.tier_query_fetch,
|
|
.view_update_every = r->view.update_every,
|
|
.query_granularity = (time_t)(r->view.update_every / r->view.group),
|
|
.group_value_flags = RRDR_VALUE_NOTHING,
|
|
};
|
|
|
|
if(!query_plan(ops, qt->window.after, qt->window.before, qt->window.points)) {
|
|
rrd2rrdr_query_ops_release(ops);
|
|
return NULL;
|
|
}
|
|
|
|
return ops;
|
|
}
|
|
|
|
static void rrd2rrdr_query_execute(RRDR *r, size_t dim_id_in_rrdr, QUERY_ENGINE_OPS *ops) {
|
|
QUERY_TARGET *qt = r->internal.qt;
|
|
QUERY_METRIC *qm = ops->qm;
|
|
|
|
const RRDR_TIME_GROUPING add_flush = r->time_grouping.add_flush;
|
|
|
|
ops->group_point = STORAGE_POINT_UNSET;
|
|
ops->query_point = STORAGE_POINT_UNSET;
|
|
|
|
RRDR_OPTIONS options = qt->window.options;
|
|
size_t points_wanted = qt->window.points;
|
|
time_t after_wanted = qt->window.after;
|
|
time_t before_wanted = qt->window.before; (void)before_wanted;
|
|
|
|
// bool debug_this = false;
|
|
// if(strcmp("user", string2str(rd->id)) == 0 && strcmp("system.cpu", string2str(rd->rrdset->id)) == 0)
|
|
// debug_this = true;
|
|
|
|
size_t points_added = 0;
|
|
|
|
long rrdr_line = -1;
|
|
bool use_anomaly_bit_as_value = (r->internal.qt->window.options & RRDR_OPTION_ANOMALY_BIT) ? true : false;
|
|
|
|
NETDATA_DOUBLE min = r->view.min, max = r->view.max;
|
|
|
|
QUERY_POINT last2_point = QUERY_POINT_EMPTY;
|
|
QUERY_POINT last1_point = QUERY_POINT_EMPTY;
|
|
QUERY_POINT new_point = QUERY_POINT_EMPTY;
|
|
|
|
// ONE POINT READ-AHEAD
|
|
// when we switch plans, we read-ahead a point from the next plan
|
|
// to join them smoothly at the exact time the next plan begins
|
|
STORAGE_POINT next1_point = STORAGE_POINT_UNSET;
|
|
|
|
time_t now_start_time = after_wanted - ops->query_granularity;
|
|
time_t now_end_time = after_wanted + ops->view_update_every - ops->query_granularity;
|
|
|
|
size_t db_points_read_since_plan_switch = 0; (void)db_points_read_since_plan_switch;
|
|
size_t query_is_finished_counter = 0;
|
|
|
|
// The main loop, based on the query granularity we need
|
|
for( ; points_added < points_wanted && query_is_finished_counter <= 10 ;
|
|
now_start_time = now_end_time, now_end_time += ops->view_update_every) {
|
|
|
|
if(unlikely(query_plan_should_switch_plan(ops, now_end_time))) {
|
|
query_planer_next_plan(ops, now_end_time, new_point.sp.end_time_s);
|
|
db_points_read_since_plan_switch = 0;
|
|
}
|
|
|
|
// read all the points of the db, prior to the time we need (now_end_time)
|
|
|
|
size_t count_same_end_time = 0;
|
|
while(count_same_end_time < 100) {
|
|
if(likely(count_same_end_time == 0)) {
|
|
last2_point = last1_point;
|
|
last1_point = new_point;
|
|
}
|
|
|
|
if(unlikely(storage_engine_query_is_finished(ops->handle))) {
|
|
query_is_finished_counter++;
|
|
|
|
if(count_same_end_time != 0) {
|
|
last2_point = last1_point;
|
|
last1_point = new_point;
|
|
}
|
|
new_point = QUERY_POINT_EMPTY;
|
|
new_point.sp.start_time_s = last1_point.sp.end_time_s;
|
|
new_point.sp.end_time_s = now_end_time;
|
|
//
|
|
// if(debug_this) info("QUERY: is finished() returned true");
|
|
//
|
|
break;
|
|
}
|
|
else
|
|
query_is_finished_counter = 0;
|
|
|
|
// fetch the new point
|
|
{
|
|
STORAGE_POINT sp;
|
|
if(likely(storage_point_is_unset(next1_point))) {
|
|
db_points_read_since_plan_switch++;
|
|
sp = storage_engine_query_next_metric(ops->handle);
|
|
ops->db_points_read_per_tier[ops->tier]++;
|
|
ops->db_total_points_read++;
|
|
|
|
if(unlikely(options & RRDR_OPTION_ABSOLUTE))
|
|
storage_point_make_positive(sp);
|
|
}
|
|
else {
|
|
// ONE POINT READ-AHEAD
|
|
sp = next1_point;
|
|
storage_point_unset(next1_point);
|
|
db_points_read_since_plan_switch = 1;
|
|
}
|
|
|
|
// ONE POINT READ-AHEAD
|
|
if(unlikely(query_plan_should_switch_plan(ops, sp.end_time_s) &&
|
|
query_planer_next_plan(ops, now_end_time, new_point.sp.end_time_s))) {
|
|
|
|
// The end time of the current point, crosses our plans (tiers)
|
|
// so, we switched plan (tier)
|
|
//
|
|
// There are 2 cases now:
|
|
//
|
|
// A. the entire point of the previous plan is to the future of point from the next plan
|
|
// B. part of the point of the previous plan overlaps with the point from the next plan
|
|
|
|
STORAGE_POINT sp2 = storage_engine_query_next_metric(ops->handle);
|
|
ops->db_points_read_per_tier[ops->tier]++;
|
|
ops->db_total_points_read++;
|
|
|
|
if(unlikely(options & RRDR_OPTION_ABSOLUTE))
|
|
storage_point_make_positive(sp);
|
|
|
|
if(sp.start_time_s > sp2.start_time_s)
|
|
// the point from the previous plan is useless
|
|
sp = sp2;
|
|
else
|
|
// let the query run from the previous plan
|
|
// but setting this will also cut off the interpolation
|
|
// of the point from the previous plan
|
|
next1_point = sp2;
|
|
}
|
|
|
|
new_point.sp = sp;
|
|
new_point.added = false;
|
|
query_point_set_id(new_point, ops->db_total_points_read);
|
|
|
|
// if(debug_this)
|
|
// info("QUERY: got point %zu, from time %ld to %ld // now from %ld to %ld // query from %ld to %ld",
|
|
// new_point.id, new_point.start_time, new_point.end_time, now_start_time, now_end_time, after_wanted, before_wanted);
|
|
//
|
|
// get the right value from the point we got
|
|
if(likely(!storage_point_is_unset(sp) && !storage_point_is_gap(sp))) {
|
|
|
|
if(unlikely(use_anomaly_bit_as_value))
|
|
new_point.value = storage_point_anomaly_rate(new_point.sp);
|
|
|
|
else {
|
|
switch (ops->tier_query_fetch) {
|
|
default:
|
|
case TIER_QUERY_FETCH_AVERAGE:
|
|
new_point.value = sp.sum / (NETDATA_DOUBLE)sp.count;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_MIN:
|
|
new_point.value = sp.min;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_MAX:
|
|
new_point.value = sp.max;
|
|
break;
|
|
|
|
case TIER_QUERY_FETCH_SUM:
|
|
new_point.value = sp.sum;
|
|
break;
|
|
};
|
|
}
|
|
}
|
|
else
|
|
new_point.value = NAN;
|
|
}
|
|
|
|
// check if the db is giving us zero duration points
|
|
if(unlikely(db_points_read_since_plan_switch > 1 &&
|
|
new_point.sp.start_time_s == new_point.sp.end_time_s)) {
|
|
|
|
internal_error(true, "QUERY: '%s', dimension '%s' next_metric() returned "
|
|
"point %zu from %ld to %ld, that are both equal",
|
|
qt->id, query_metric_id(qt, qm),
|
|
new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s);
|
|
|
|
new_point.sp.start_time_s = new_point.sp.end_time_s - ops->tier_ptr->db_update_every_s;
|
|
}
|
|
|
|
// check if the db is advancing the query
|
|
if(unlikely(db_points_read_since_plan_switch > 1 &&
|
|
new_point.sp.end_time_s <= last1_point.sp.end_time_s)) {
|
|
|
|
internal_error(true,
|
|
"QUERY: '%s', dimension '%s' next_metric() returned "
|
|
"point %zu from %ld to %ld, before the "
|
|
"last point %zu from %ld to %ld, "
|
|
"now is %ld to %ld",
|
|
qt->id, query_metric_id(qt, qm),
|
|
new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s,
|
|
last1_point.id, last1_point.sp.start_time_s, last1_point.sp.end_time_s,
|
|
now_start_time, now_end_time);
|
|
|
|
count_same_end_time++;
|
|
continue;
|
|
}
|
|
count_same_end_time = 0;
|
|
|
|
// decide how to use this point
|
|
if(likely(new_point.sp.end_time_s < now_end_time)) { // likely to favor tier0
|
|
// this db point ends before our now_end_time
|
|
|
|
if(likely(new_point.sp.end_time_s >= now_start_time)) { // likely to favor tier0
|
|
// this db point ends after our now_start time
|
|
|
|
query_add_point_to_group(r, new_point, ops, add_flush);
|
|
new_point.added = true;
|
|
}
|
|
else {
|
|
// we don't need this db point
|
|
// it is totally outside our current time-frame
|
|
|
|
// this is desirable for the first point of the query
|
|
// because it allows us to interpolate the next point
|
|
// at exactly the time we will want
|
|
|
|
// we only log if this is not point 1
|
|
internal_error(new_point.sp.end_time_s < ops->plan_expanded_after &&
|
|
db_points_read_since_plan_switch > 1,
|
|
"QUERY: '%s', dimension '%s' next_metric() "
|
|
"returned point %zu from %ld time %ld, "
|
|
"which is entirely before our current timeframe %ld to %ld "
|
|
"(and before the entire query, after %ld, before %ld)",
|
|
qt->id, query_metric_id(qt, qm),
|
|
new_point.id, new_point.sp.start_time_s, new_point.sp.end_time_s,
|
|
now_start_time, now_end_time,
|
|
ops->plan_expanded_after, ops->plan_expanded_before);
|
|
}
|
|
|
|
}
|
|
else {
|
|
// the point ends in the future
|
|
// so, we will interpolate it below, at the inner loop
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(unlikely(count_same_end_time)) {
|
|
internal_error(true,
|
|
"QUERY: '%s', dimension '%s', the database does not advance the query,"
|
|
" it returned an end time less or equal to the end time of the last "
|
|
"point we got %ld, %zu times",
|
|
qt->id, query_metric_id(qt, qm),
|
|
last1_point.sp.end_time_s, count_same_end_time);
|
|
|
|
if(unlikely(new_point.sp.end_time_s <= last1_point.sp.end_time_s))
|
|
new_point.sp.end_time_s = now_end_time;
|
|
}
|
|
|
|
time_t stop_time = new_point.sp.end_time_s;
|
|
if(unlikely(!storage_point_is_unset(next1_point) && next1_point.start_time_s >= now_end_time)) {
|
|
// ONE POINT READ-AHEAD
|
|
// the point crosses the start time of the
|
|
// read ahead storage point we have read
|
|
stop_time = next1_point.start_time_s;
|
|
}
|
|
|
|
// the inner loop
|
|
// we have 3 points in memory: last2, last1, new
|
|
// we select the one to use based on their timestamps
|
|
|
|
internal_fatal(now_end_time > stop_time || points_added >= points_wanted,
|
|
"QUERY: first part of query provides invalid point to interpolate (now_end_time %ld, stop_time %ld",
|
|
now_end_time, stop_time);
|
|
|
|
do {
|
|
// now_start_time is wrong in this loop
|
|
// but, we don't need it
|
|
|
|
QUERY_POINT current_point;
|
|
|
|
if(likely(now_end_time > new_point.sp.start_time_s)) {
|
|
// it is time for our NEW point to be used
|
|
current_point = new_point;
|
|
new_point.added = true; // first copy, then set it, so that new_point will not be added again
|
|
query_interpolate_point(current_point, last1_point, now_end_time);
|
|
|
|
// internal_error(current_point.id > 0
|
|
// && last1_point.id == 0
|
|
// && current_point.end_time > after_wanted
|
|
// && current_point.end_time > now_end_time,
|
|
// "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
|
|
// " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
|
|
// " but we could really favor by having last_point1 in this query.",
|
|
// qt->id, string2str(qm->dimension.id),
|
|
// after_wanted, before_wanted,
|
|
// ops.view_update_every, ops.query_granularity,
|
|
// current_point.id, current_point.start_time, current_point.end_time,
|
|
// now_end_time);
|
|
}
|
|
else if(likely(now_end_time <= last1_point.sp.end_time_s)) {
|
|
// our LAST point is still valid
|
|
current_point = last1_point;
|
|
last1_point.added = true; // first copy, then set it, so that last1_point will not be added again
|
|
query_interpolate_point(current_point, last2_point, now_end_time);
|
|
|
|
// internal_error(current_point.id > 0
|
|
// && last2_point.id == 0
|
|
// && current_point.end_time > after_wanted
|
|
// && current_point.end_time > now_end_time,
|
|
// "QUERY: '%s', dimension '%s', after %ld, before %ld, view update every %ld,"
|
|
// " query granularity %ld, interpolating point %zu (from %ld to %ld) at %ld,"
|
|
// " but we could really favor by having last_point2 in this query.",
|
|
// qt->id, string2str(qm->dimension.id),
|
|
// after_wanted, before_wanted, ops.view_update_every, ops.query_granularity,
|
|
// current_point.id, current_point.start_time, current_point.end_time,
|
|
// now_end_time);
|
|
}
|
|
else {
|
|
// a GAP, we don't have a value this time
|
|
current_point = QUERY_POINT_EMPTY;
|
|
}
|
|
|
|
query_add_point_to_group(r, current_point, ops, add_flush);
|
|
|
|
rrdr_line = rrdr_line_init(r, now_end_time, rrdr_line);
|
|
size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
|
|
|
|
// find the place to store our values
|
|
RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_o_v_index];
|
|
|
|
// update the dimension options
|
|
if(likely(ops->group_points_non_zero))
|
|
r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
|
|
|
|
// store the specific point options
|
|
*rrdr_value_options_ptr = ops->group_value_flags;
|
|
|
|
// store the group value
|
|
NETDATA_DOUBLE group_value = time_grouping_flush(r, rrdr_value_options_ptr, add_flush);
|
|
r->v[rrdr_o_v_index] = group_value;
|
|
|
|
r->ar[rrdr_o_v_index] = storage_point_anomaly_rate(ops->group_point);
|
|
|
|
if(likely(points_added || r->internal.queries_count)) {
|
|
// find the min/max across all dimensions
|
|
|
|
if(unlikely(group_value < min)) min = group_value;
|
|
if(unlikely(group_value > max)) max = group_value;
|
|
|
|
}
|
|
else {
|
|
// runs only when r->internal.queries_count == 0 && points_added == 0
|
|
// so, on the first point added for the query.
|
|
min = max = group_value;
|
|
}
|
|
|
|
points_added++;
|
|
ops->group_points_added = 0;
|
|
ops->group_value_flags = RRDR_VALUE_NOTHING;
|
|
ops->group_points_non_zero = 0;
|
|
ops->group_point = STORAGE_POINT_UNSET;
|
|
|
|
now_end_time += ops->view_update_every;
|
|
} while(now_end_time <= stop_time && points_added < points_wanted);
|
|
|
|
// the loop above increased "now" by ops->view_update_every,
|
|
// but the main loop will increase it too,
|
|
// so, let's undo the last iteration of this loop
|
|
now_end_time -= ops->view_update_every;
|
|
}
|
|
query_planer_finalize_remaining_plans(ops);
|
|
|
|
qm->query_points = ops->query_point;
|
|
|
|
// fill the rest of the points with empty values
|
|
while (points_added < points_wanted) {
|
|
rrdr_line++;
|
|
size_t rrdr_o_v_index = rrdr_line * r->d + dim_id_in_rrdr;
|
|
r->o[rrdr_o_v_index] = RRDR_VALUE_EMPTY;
|
|
r->v[rrdr_o_v_index] = 0.0;
|
|
r->ar[rrdr_o_v_index] = 0.0;
|
|
points_added++;
|
|
}
|
|
|
|
r->internal.queries_count++;
|
|
r->view.min = min;
|
|
r->view.max = max;
|
|
|
|
r->stats.result_points_generated += points_added;
|
|
r->stats.db_points_read += ops->db_total_points_read;
|
|
for(size_t tr = 0; tr < storage_tiers ; tr++)
|
|
qt->db.tiers[tr].points += ops->db_points_read_per_tier[tr];
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill the gap of a tier
|
|
|
|
void store_metric_at_tier(RRDDIM *rd, size_t tier, struct rrddim_tier *t, STORAGE_POINT sp, usec_t now_ut);
|
|
|
|
void rrdr_fill_tier_gap_from_smaller_tiers(RRDDIM *rd, size_t tier, time_t now_s) {
|
|
if(unlikely(tier >= storage_tiers)) return;
|
|
if(storage_tiers_backfill[tier] == RRD_BACKFILL_NONE) return;
|
|
|
|
struct rrddim_tier *t = &rd->tiers[tier];
|
|
if(unlikely(!t)) return;
|
|
|
|
time_t latest_time_s = storage_engine_latest_time_s(t->backend, t->db_metric_handle);
|
|
time_t granularity = (time_t)t->tier_grouping * (time_t)rd->update_every;
|
|
time_t time_diff = now_s - latest_time_s;
|
|
|
|
// if the user wants only NEW backfilling, and we don't have any data
|
|
if(storage_tiers_backfill[tier] == RRD_BACKFILL_NEW && latest_time_s <= 0) return;
|
|
|
|
// there is really nothing we can do
|
|
if(now_s <= latest_time_s || time_diff < granularity) return;
|
|
|
|
struct storage_engine_query_handle handle;
|
|
|
|
// for each lower tier
|
|
for(int read_tier = (int)tier - 1; read_tier >= 0 ; read_tier--){
|
|
time_t smaller_tier_first_time = storage_engine_oldest_time_s(rd->tiers[read_tier].backend, rd->tiers[read_tier].db_metric_handle);
|
|
time_t smaller_tier_last_time = storage_engine_latest_time_s(rd->tiers[read_tier].backend, rd->tiers[read_tier].db_metric_handle);
|
|
if(smaller_tier_last_time <= latest_time_s) continue; // it is as bad as we are
|
|
|
|
long after_wanted = (latest_time_s < smaller_tier_first_time) ? smaller_tier_first_time : latest_time_s;
|
|
long before_wanted = smaller_tier_last_time;
|
|
|
|
struct rrddim_tier *tmp = &rd->tiers[read_tier];
|
|
storage_engine_query_init(tmp->backend, tmp->db_metric_handle, &handle, after_wanted, before_wanted, STORAGE_PRIORITY_HIGH);
|
|
|
|
size_t points_read = 0;
|
|
|
|
while(!storage_engine_query_is_finished(&handle)) {
|
|
|
|
STORAGE_POINT sp = storage_engine_query_next_metric(&handle);
|
|
points_read++;
|
|
|
|
if(sp.end_time_s > latest_time_s) {
|
|
latest_time_s = sp.end_time_s;
|
|
store_metric_at_tier(rd, tier, t, sp, sp.end_time_s * USEC_PER_SEC);
|
|
}
|
|
}
|
|
|
|
storage_engine_query_finalize(&handle);
|
|
store_metric_collection_completed();
|
|
global_statistics_backfill_query_completed(points_read);
|
|
|
|
//internal_error(true, "DBENGINE: backfilled chart '%s', dimension '%s', tier %d, from %ld to %ld, with %zu points from tier %d",
|
|
// rd->rrdset->name, rd->name, tier, after_wanted, before_wanted, points, tr);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// fill RRDR for the whole chart
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
static void rrd2rrdr_log_request_response_metadata(RRDR *r
|
|
, RRDR_OPTIONS options __maybe_unused
|
|
, RRDR_TIME_GROUPING group_method
|
|
, bool aligned
|
|
, size_t group
|
|
, time_t resampling_time
|
|
, size_t resampling_group
|
|
, time_t after_wanted
|
|
, time_t after_requested
|
|
, time_t before_wanted
|
|
, time_t before_requested
|
|
, size_t points_requested
|
|
, size_t points_wanted
|
|
//, size_t after_slot
|
|
//, size_t before_slot
|
|
, const char *msg
|
|
) {
|
|
|
|
QUERY_TARGET *qt = r->internal.qt;
|
|
time_t first_entry_s = qt->db.first_time_s;
|
|
time_t last_entry_s = qt->db.last_time_s;
|
|
|
|
internal_error(
|
|
true,
|
|
"rrd2rrdr() on %s update every %ld with %s grouping %s (group: %zu, resampling_time: %ld, resampling_group: %zu), "
|
|
"after (got: %ld, want: %ld, req: %ld, db: %ld), "
|
|
"before (got: %ld, want: %ld, req: %ld, db: %ld), "
|
|
"duration (got: %ld, want: %ld, req: %ld, db: %ld), "
|
|
"points (got: %zu, want: %zu, req: %zu), "
|
|
"%s"
|
|
, qt->id
|
|
, qt->window.query_granularity
|
|
|
|
// grouping
|
|
, (aligned) ? "aligned" : "unaligned"
|
|
, time_grouping_method2string(group_method)
|
|
, group
|
|
, resampling_time
|
|
, resampling_group
|
|
|
|
// after
|
|
, r->view.after
|
|
, after_wanted
|
|
, after_requested
|
|
, first_entry_s
|
|
|
|
// before
|
|
, r->view.before
|
|
, before_wanted
|
|
, before_requested
|
|
, last_entry_s
|
|
|
|
// duration
|
|
, (long)(r->view.before - r->view.after + qt->window.query_granularity)
|
|
, (long)(before_wanted - after_wanted + qt->window.query_granularity)
|
|
, (long)before_requested - after_requested
|
|
, (long)((last_entry_s - first_entry_s) + qt->window.query_granularity)
|
|
|
|
// points
|
|
, r->rows
|
|
, points_wanted
|
|
, points_requested
|
|
|
|
// message
|
|
, msg
|
|
);
|
|
}
|
|
#endif // NETDATA_INTERNAL_CHECKS
|
|
|
|
// Returns 1 if an absolute period was requested or 0 if it was a relative period
|
|
bool rrdr_relative_window_to_absolute(time_t *after, time_t *before, time_t *now_ptr) {
|
|
time_t now = now_realtime_sec() - 1;
|
|
|
|
if(now_ptr)
|
|
*now_ptr = now;
|
|
|
|
int absolute_period_requested = -1;
|
|
long long after_requested, before_requested;
|
|
|
|
before_requested = *before;
|
|
after_requested = *after;
|
|
|
|
// allow relative for before (smaller than API_RELATIVE_TIME_MAX)
|
|
if(ABS(before_requested) <= API_RELATIVE_TIME_MAX) {
|
|
// if the user asked for a positive relative time,
|
|
// flip it to a negative
|
|
if(before_requested > 0)
|
|
before_requested = -before_requested;
|
|
|
|
before_requested = now + before_requested;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
// allow relative for after (smaller than API_RELATIVE_TIME_MAX)
|
|
if(ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
|
|
if(after_requested > 0)
|
|
after_requested = -after_requested;
|
|
|
|
// if the user didn't give an after, use the number of points
|
|
// to give a sane default
|
|
if(after_requested == 0)
|
|
after_requested = -600;
|
|
|
|
// since the query engine now returns inclusive timestamps
|
|
// it is awkward to return 6 points when after=-5 is given
|
|
// so for relative queries we add 1 second, to give
|
|
// more predictable results to users.
|
|
after_requested = before_requested + after_requested + 1;
|
|
absolute_period_requested = 0;
|
|
}
|
|
|
|
if(absolute_period_requested == -1)
|
|
absolute_period_requested = 1;
|
|
|
|
// check if the parameters are flipped
|
|
if(after_requested > before_requested) {
|
|
long long t = before_requested;
|
|
before_requested = after_requested;
|
|
after_requested = t;
|
|
}
|
|
|
|
// if the query requests future data
|
|
// shift the query back to be in the present time
|
|
// (this may also happen because of the rules above)
|
|
if(before_requested > now) {
|
|
long long delta = before_requested - now;
|
|
before_requested -= delta;
|
|
after_requested -= delta;
|
|
}
|
|
|
|
time_t absolute_minimum_time = now - (10 * 365 * 86400);
|
|
time_t absolute_maximum_time = now + (1 * 365 * 86400);
|
|
|
|
if (after_requested < absolute_minimum_time && !unittest_running)
|
|
after_requested = absolute_minimum_time;
|
|
|
|
if (after_requested > absolute_maximum_time && !unittest_running)
|
|
after_requested = absolute_maximum_time;
|
|
|
|
if (before_requested < absolute_minimum_time && !unittest_running)
|
|
before_requested = absolute_minimum_time;
|
|
|
|
if (before_requested > absolute_maximum_time && !unittest_running)
|
|
before_requested = absolute_maximum_time;
|
|
|
|
*before = before_requested;
|
|
*after = after_requested;
|
|
|
|
return (absolute_period_requested != 1);
|
|
}
|
|
|
|
// #define DEBUG_QUERY_LOGIC 1
|
|
|
|
#ifdef DEBUG_QUERY_LOGIC
|
|
#define query_debug_log_init() BUFFER *debug_log = buffer_create(1000)
|
|
#define query_debug_log(args...) buffer_sprintf(debug_log, ##args)
|
|
#define query_debug_log_fin() { \
|
|
info("QUERY: '%s', after:%ld, before:%ld, duration:%ld, points:%zu, res:%ld - wanted => after:%ld, before:%ld, points:%zu, group:%zu, granularity:%ld, resgroup:%ld, resdiv:" NETDATA_DOUBLE_FORMAT_AUTO " %s", qt->id, after_requested, before_requested, before_requested - after_requested, points_requested, resampling_time_requested, after_wanted, before_wanted, points_wanted, group, query_granularity, resampling_group, resampling_divisor, buffer_tostring(debug_log)); \
|
|
buffer_free(debug_log); \
|
|
debug_log = NULL; \
|
|
}
|
|
#define query_debug_log_free() do { buffer_free(debug_log); } while(0)
|
|
#else
|
|
#define query_debug_log_init() debug_dummy()
|
|
#define query_debug_log(args...) debug_dummy()
|
|
#define query_debug_log_fin() debug_dummy()
|
|
#define query_debug_log_free() debug_dummy()
|
|
#endif
|
|
|
|
bool query_target_calculate_window(QUERY_TARGET *qt) {
|
|
if (unlikely(!qt)) return false;
|
|
|
|
size_t points_requested = (long)qt->request.points;
|
|
time_t after_requested = qt->request.after;
|
|
time_t before_requested = qt->request.before;
|
|
RRDR_TIME_GROUPING group_method = qt->request.time_group_method;
|
|
time_t resampling_time_requested = qt->request.resampling_time;
|
|
RRDR_OPTIONS options = qt->window.options;
|
|
size_t tier = qt->request.tier;
|
|
time_t update_every = qt->db.minimum_latest_update_every_s ? qt->db.minimum_latest_update_every_s : 1;
|
|
|
|
// RULES
|
|
// points_requested = 0
|
|
// the user wants all the natural points the database has
|
|
//
|
|
// after_requested = 0
|
|
// the user wants to start the query from the oldest point in our database
|
|
//
|
|
// before_requested = 0
|
|
// the user wants the query to end to the latest point in our database
|
|
//
|
|
// when natural points are wanted, the query has to be aligned to the update_every
|
|
// of the database
|
|
|
|
size_t points_wanted = points_requested;
|
|
time_t after_wanted = after_requested;
|
|
time_t before_wanted = before_requested;
|
|
|
|
bool aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
|
|
bool automatic_natural_points = (points_wanted == 0);
|
|
bool relative_period_requested = false;
|
|
bool natural_points = (options & RRDR_OPTION_NATURAL_POINTS) || automatic_natural_points;
|
|
bool before_is_aligned_to_db_end = false;
|
|
|
|
query_debug_log_init();
|
|
|
|
if (ABS(before_requested) <= API_RELATIVE_TIME_MAX || ABS(after_requested) <= API_RELATIVE_TIME_MAX) {
|
|
relative_period_requested = true;
|
|
natural_points = true;
|
|
options |= RRDR_OPTION_NATURAL_POINTS;
|
|
query_debug_log(":relative+natural");
|
|
}
|
|
|
|
// if the user wants virtual points, make sure we do it
|
|
if (options & RRDR_OPTION_VIRTUAL_POINTS)
|
|
natural_points = false;
|
|
|
|
// set the right flag about natural and virtual points
|
|
if (natural_points) {
|
|
options |= RRDR_OPTION_NATURAL_POINTS;
|
|
|
|
if (options & RRDR_OPTION_VIRTUAL_POINTS)
|
|
options &= ~RRDR_OPTION_VIRTUAL_POINTS;
|
|
}
|
|
else {
|
|
options |= RRDR_OPTION_VIRTUAL_POINTS;
|
|
|
|
if (options & RRDR_OPTION_NATURAL_POINTS)
|
|
options &= ~RRDR_OPTION_NATURAL_POINTS;
|
|
}
|
|
|
|
if (after_wanted == 0 || before_wanted == 0) {
|
|
relative_period_requested = true;
|
|
|
|
time_t first_entry_s = qt->db.first_time_s;
|
|
time_t last_entry_s = qt->db.last_time_s;
|
|
|
|
if (first_entry_s == 0 || last_entry_s == 0) {
|
|
internal_error(true, "QUERY: no data detected on query '%s' (db first_entry_t = %ld, last_entry_t = %ld)", qt->id, first_entry_s, last_entry_s);
|
|
after_wanted = qt->window.after;
|
|
before_wanted = qt->window.before;
|
|
|
|
if(after_wanted == before_wanted)
|
|
after_wanted = before_wanted - update_every;
|
|
|
|
if (points_wanted == 0) {
|
|
points_wanted = (before_wanted - after_wanted) / update_every;
|
|
query_debug_log(":zero points_wanted %zu", points_wanted);
|
|
}
|
|
}
|
|
else {
|
|
query_debug_log(":first_entry_t %ld, last_entry_t %ld", first_entry_s, last_entry_s);
|
|
|
|
if (after_wanted == 0) {
|
|
after_wanted = first_entry_s;
|
|
query_debug_log(":zero after_wanted %ld", after_wanted);
|
|
}
|
|
|
|
if (before_wanted == 0) {
|
|
before_wanted = last_entry_s;
|
|
before_is_aligned_to_db_end = true;
|
|
query_debug_log(":zero before_wanted %ld", before_wanted);
|
|
}
|
|
|
|
if (points_wanted == 0) {
|
|
points_wanted = (last_entry_s - first_entry_s) / update_every;
|
|
query_debug_log(":zero points_wanted %zu", points_wanted);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (points_wanted == 0) {
|
|
points_wanted = 600;
|
|
query_debug_log(":zero600 points_wanted %zu", points_wanted);
|
|
}
|
|
|
|
// convert our before_wanted and after_wanted to absolute
|
|
rrdr_relative_window_to_absolute(&after_wanted, &before_wanted, NULL);
|
|
query_debug_log(":relative2absolute after %ld, before %ld", after_wanted, before_wanted);
|
|
|
|
if (natural_points && (options & RRDR_OPTION_SELECTED_TIER) && tier > 0 && storage_tiers > 1) {
|
|
update_every = rrdset_find_natural_update_every_for_timeframe(
|
|
qt, after_wanted, before_wanted, points_wanted, options, tier);
|
|
|
|
if (update_every <= 0) update_every = qt->db.minimum_latest_update_every_s;
|
|
query_debug_log(":natural update every %ld", update_every);
|
|
}
|
|
|
|
// this is the update_every of the query
|
|
// it may be different to the update_every of the database
|
|
time_t query_granularity = (natural_points) ? update_every : 1;
|
|
if (query_granularity <= 0) query_granularity = 1;
|
|
query_debug_log(":query_granularity %ld", query_granularity);
|
|
|
|
// align before_wanted and after_wanted to query_granularity
|
|
if (before_wanted % query_granularity) {
|
|
before_wanted -= before_wanted % query_granularity;
|
|
query_debug_log(":granularity align before_wanted %ld", before_wanted);
|
|
}
|
|
|
|
if (after_wanted % query_granularity) {
|
|
after_wanted -= after_wanted % query_granularity;
|
|
query_debug_log(":granularity align after_wanted %ld", after_wanted);
|
|
}
|
|
|
|
// automatic_natural_points is set when the user wants all the points available in the database
|
|
if (automatic_natural_points) {
|
|
points_wanted = (before_wanted - after_wanted + 1) / query_granularity;
|
|
if (unlikely(points_wanted <= 0)) points_wanted = 1;
|
|
query_debug_log(":auto natural points_wanted %zu", points_wanted);
|
|
}
|
|
|
|
time_t duration = before_wanted - after_wanted;
|
|
|
|
// if the resampling time is too big, extend the duration to the past
|
|
if (unlikely(resampling_time_requested > duration)) {
|
|
after_wanted = before_wanted - resampling_time_requested;
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":resampling after_wanted %ld", after_wanted);
|
|
}
|
|
|
|
// if the duration is not aligned to resampling time
|
|
// extend the duration to the past, to avoid a gap at the chart
|
|
// only when the missing duration is above 1/10th of a point
|
|
if (resampling_time_requested > query_granularity && duration % resampling_time_requested) {
|
|
time_t delta = duration % resampling_time_requested;
|
|
if (delta > resampling_time_requested / 10) {
|
|
after_wanted -= resampling_time_requested - delta;
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":resampling2 after_wanted %ld", after_wanted);
|
|
}
|
|
}
|
|
|
|
// the available points of the query
|
|
size_t points_available = (duration + 1) / query_granularity;
|
|
if (unlikely(points_available <= 0)) points_available = 1;
|
|
query_debug_log(":points_available %zu", points_available);
|
|
|
|
if (points_wanted > points_available) {
|
|
points_wanted = points_available;
|
|
query_debug_log(":max points_wanted %zu", points_wanted);
|
|
}
|
|
|
|
if(points_wanted > 86400 && !unittest_running) {
|
|
points_wanted = 86400;
|
|
query_debug_log(":absolute max points_wanted %zu", points_wanted);
|
|
}
|
|
|
|
// calculate the desired grouping of source data points
|
|
size_t group = points_available / points_wanted;
|
|
if (group == 0) group = 1;
|
|
|
|
// round "group" to the closest integer
|
|
if (points_available % points_wanted > points_wanted / 2)
|
|
group++;
|
|
|
|
query_debug_log(":group %zu", group);
|
|
|
|
if (points_wanted * group * query_granularity < (size_t)duration) {
|
|
// the grouping we are going to do, is not enough
|
|
// to cover the entire duration requested, so
|
|
// we have to change the number of points, to make sure we will
|
|
// respect the timeframe as closely as possibly
|
|
|
|
// let's see how many points are the optimal
|
|
points_wanted = points_available / group;
|
|
|
|
if (points_wanted * group < points_available)
|
|
points_wanted++;
|
|
|
|
if (unlikely(points_wanted == 0))
|
|
points_wanted = 1;
|
|
|
|
query_debug_log(":optimal points %zu", points_wanted);
|
|
}
|
|
|
|
// resampling_time_requested enforces a certain grouping multiple
|
|
NETDATA_DOUBLE resampling_divisor = 1.0;
|
|
size_t resampling_group = 1;
|
|
if (unlikely(resampling_time_requested > query_granularity)) {
|
|
// the points we should group to satisfy gtime
|
|
resampling_group = resampling_time_requested / query_granularity;
|
|
if (unlikely(resampling_time_requested % query_granularity))
|
|
resampling_group++;
|
|
|
|
query_debug_log(":resampling group %zu", resampling_group);
|
|
|
|
// adapt group according to resampling_group
|
|
if (unlikely(group < resampling_group)) {
|
|
group = resampling_group; // do not allow grouping below the desired one
|
|
query_debug_log(":group less res %zu", group);
|
|
}
|
|
if (unlikely(group % resampling_group)) {
|
|
group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
|
|
query_debug_log(":group mod res %zu", group);
|
|
}
|
|
|
|
// resampling_divisor = group / resampling_group;
|
|
resampling_divisor = (NETDATA_DOUBLE) (group * query_granularity) / (NETDATA_DOUBLE) resampling_time_requested;
|
|
query_debug_log(":resampling divisor " NETDATA_DOUBLE_FORMAT, resampling_divisor);
|
|
}
|
|
|
|
// now that we have group, align the requested timeframe to fit it.
|
|
if (aligned && before_wanted % (group * query_granularity)) {
|
|
if (before_is_aligned_to_db_end)
|
|
before_wanted -= before_wanted % (time_t)(group * query_granularity);
|
|
else
|
|
before_wanted += (time_t)(group * query_granularity) - before_wanted % (time_t)(group * query_granularity);
|
|
query_debug_log(":align before_wanted %ld", before_wanted);
|
|
}
|
|
|
|
after_wanted = before_wanted - (time_t)(points_wanted * group * query_granularity) + query_granularity;
|
|
query_debug_log(":final after_wanted %ld", after_wanted);
|
|
|
|
duration = before_wanted - after_wanted;
|
|
query_debug_log(":final duration %ld", duration + 1);
|
|
|
|
query_debug_log_fin();
|
|
|
|
internal_error(points_wanted != duration / (query_granularity * group) + 1,
|
|
"QUERY: points_wanted %zu is not points %zu",
|
|
points_wanted, (size_t)(duration / (query_granularity * group) + 1));
|
|
|
|
internal_error(group < resampling_group,
|
|
"QUERY: group %zu is less than the desired group points %zu",
|
|
group, resampling_group);
|
|
|
|
internal_error(group > resampling_group && group % resampling_group,
|
|
"QUERY: group %zu is not a multiple of the desired group points %zu",
|
|
group, resampling_group);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// update QUERY_TARGET with our calculations
|
|
|
|
qt->window.after = after_wanted;
|
|
qt->window.before = before_wanted;
|
|
qt->window.relative = relative_period_requested;
|
|
qt->window.points = points_wanted;
|
|
qt->window.group = group;
|
|
qt->window.time_group_method = group_method;
|
|
qt->window.time_group_options = qt->request.time_group_options;
|
|
qt->window.query_granularity = query_granularity;
|
|
qt->window.resampling_group = resampling_group;
|
|
qt->window.resampling_divisor = resampling_divisor;
|
|
qt->window.options = options;
|
|
qt->window.tier = tier;
|
|
qt->window.aligned = aligned;
|
|
|
|
return true;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// group by
|
|
|
|
struct group_by_label_key {
|
|
DICTIONARY *values;
|
|
};
|
|
|
|
static void group_by_label_key_insert_cb(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data) {
|
|
// add the key to our r->label_keys global keys dictionary
|
|
DICTIONARY *label_keys = data;
|
|
dictionary_set(label_keys, dictionary_acquired_item_name(item), NULL, 0);
|
|
|
|
// create a dictionary for the values of this key
|
|
struct group_by_label_key *k = value;
|
|
k->values = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE, NULL, 0);
|
|
}
|
|
|
|
static void group_by_label_key_delete_cb(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data __maybe_unused) {
|
|
struct group_by_label_key *k = value;
|
|
dictionary_destroy(k->values);
|
|
}
|
|
|
|
static int rrdlabels_traversal_cb_to_group_by_label_key(const char *name, const char *value, RRDLABEL_SRC ls __maybe_unused, void *data) {
|
|
DICTIONARY *dl = data;
|
|
struct group_by_label_key *k = dictionary_set(dl, name, NULL, sizeof(struct group_by_label_key));
|
|
dictionary_set(k->values, value, NULL, 0);
|
|
return 1;
|
|
}
|
|
|
|
void rrdr_json_group_by_labels(BUFFER *wb, const char *key, RRDR *r, RRDR_OPTIONS options) {
|
|
if(!r->label_keys || !r->dl)
|
|
return;
|
|
|
|
buffer_json_member_add_object(wb, key);
|
|
|
|
void *t;
|
|
dfe_start_read(r->label_keys, t) {
|
|
buffer_json_member_add_array(wb, t_dfe.name);
|
|
|
|
for(size_t d = 0; d < r->d ;d++) {
|
|
if(!rrdr_dimension_should_be_exposed(r->od[d], options))
|
|
continue;
|
|
|
|
struct group_by_label_key *k = dictionary_get(r->dl[d], t_dfe.name);
|
|
if(k) {
|
|
buffer_json_add_array_item_array(wb);
|
|
void *tt;
|
|
dfe_start_read(k->values, tt) {
|
|
buffer_json_add_array_item_string(wb, tt_dfe.name);
|
|
}
|
|
dfe_done(tt);
|
|
buffer_json_array_close(wb);
|
|
}
|
|
else
|
|
buffer_json_add_array_item_string(wb, NULL);
|
|
}
|
|
|
|
buffer_json_array_close(wb);
|
|
}
|
|
dfe_done(t);
|
|
|
|
buffer_json_object_close(wb); // key
|
|
}
|
|
|
|
static int group_by_label_is_space(char c) {
|
|
if(c == ',' || c == '|')
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rrd2rrdr_set_timestamps(RRDR *r) {
|
|
QUERY_TARGET *qt = r->internal.qt;
|
|
|
|
internal_fatal(qt->window.points != r->n, "QUERY: mismatch to the number of points in qt and r");
|
|
|
|
r->view.group = qt->window.group;
|
|
r->view.update_every = (int) query_view_update_every(qt);
|
|
r->view.before = qt->window.before;
|
|
r->view.after = qt->window.after;
|
|
|
|
r->time_grouping.points_wanted = qt->window.points;
|
|
r->time_grouping.resampling_group = qt->window.resampling_group;
|
|
r->time_grouping.resampling_divisor = qt->window.resampling_divisor;
|
|
|
|
r->rows = qt->window.points;
|
|
|
|
size_t points_wanted = qt->window.points;
|
|
time_t after_wanted = qt->window.after;
|
|
time_t before_wanted = qt->window.before; (void)before_wanted;
|
|
|
|
time_t view_update_every = r->view.update_every;
|
|
time_t query_granularity = (time_t)(r->view.update_every / r->view.group);
|
|
|
|
size_t rrdr_line = 0;
|
|
time_t first_point_end_time = after_wanted + view_update_every - query_granularity;
|
|
time_t now_end_time = first_point_end_time;
|
|
|
|
while (rrdr_line < points_wanted) {
|
|
r->t[rrdr_line++] = now_end_time;
|
|
now_end_time += view_update_every;
|
|
}
|
|
|
|
internal_fatal(r->t[0] != first_point_end_time, "QUERY: wrong first timestamp in the query");
|
|
internal_error(r->t[points_wanted - 1] != before_wanted,
|
|
"QUERY: wrong last timestamp in the query, expected %ld, found %ld",
|
|
before_wanted, r->t[points_wanted - 1]);
|
|
}
|
|
|
|
static void query_group_by_make_dimension_key(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_instance) {
|
|
buffer_flush(key);
|
|
if(unlikely(!query_has_percentage_of_instance && qm->status & RRDR_DIMENSION_HIDDEN)) {
|
|
buffer_strcat(key, "__hidden_dimensions__");
|
|
}
|
|
else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
|
|
buffer_strcat(key, "selected");
|
|
}
|
|
else {
|
|
if (group_by & RRDR_GROUP_BY_DIMENSION) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
buffer_strcat(key, query_metric_name(qt, qm));
|
|
}
|
|
|
|
if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
buffer_strcat(key, string2str(query_instance_id_fqdn(qi, qt->request.version)));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_LABEL) {
|
|
DICTIONARY *labels = rrdinstance_acquired_labels(qi->ria);
|
|
for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
|
|
}
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
buffer_strcat(key, qn->rrdhost->machine_guid);
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_CONTEXT) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_UNITS) {
|
|
buffer_fast_strcat(key, "|", 1);
|
|
buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void query_group_by_make_dimension_id(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_instance) {
|
|
buffer_flush(key);
|
|
if(unlikely(!query_has_percentage_of_instance && qm->status & RRDR_DIMENSION_HIDDEN)) {
|
|
buffer_strcat(key, "__hidden_dimensions__");
|
|
}
|
|
else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
|
|
buffer_strcat(key, "selected");
|
|
}
|
|
else {
|
|
if (group_by & RRDR_GROUP_BY_DIMENSION) {
|
|
buffer_strcat(key, query_metric_name(qt, qm));
|
|
}
|
|
|
|
if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE)
|
|
buffer_strcat(key, rrdinstance_acquired_id(qi->ria));
|
|
else
|
|
buffer_strcat(key, string2str(query_instance_id_fqdn(qi, qt->request.version)));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_LABEL) {
|
|
DICTIONARY *labels = rrdinstance_acquired_labels(qi->ria);
|
|
for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
|
|
}
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, qn->rrdhost->machine_guid);
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_CONTEXT) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_UNITS) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void query_group_by_make_dimension_name(BUFFER *key, RRDR_GROUP_BY group_by, size_t group_by_id, QUERY_TARGET *qt, QUERY_NODE *qn, QUERY_CONTEXT *qc, QUERY_INSTANCE *qi, QUERY_DIMENSION *qd __maybe_unused, QUERY_METRIC *qm, bool query_has_percentage_of_instance) {
|
|
buffer_flush(key);
|
|
if(unlikely(!query_has_percentage_of_instance && qm->status & RRDR_DIMENSION_HIDDEN)) {
|
|
buffer_strcat(key, "__hidden_dimensions__");
|
|
}
|
|
else if(unlikely(group_by & RRDR_GROUP_BY_SELECTED)) {
|
|
buffer_strcat(key, "selected");
|
|
}
|
|
else {
|
|
if (group_by & RRDR_GROUP_BY_DIMENSION) {
|
|
buffer_strcat(key, query_metric_name(qt, qm));
|
|
}
|
|
|
|
if (group_by & (RRDR_GROUP_BY_INSTANCE|RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE)
|
|
buffer_strcat(key, rrdinstance_acquired_name(qi->ria));
|
|
else
|
|
buffer_strcat(key, string2str(query_instance_name_fqdn(qi, qt->request.version)));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_LABEL) {
|
|
DICTIONARY *labels = rrdinstance_acquired_labels(qi->ria);
|
|
for (size_t l = 0; l < qt->group_by[group_by_id].used; l++) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
rrdlabels_get_value_to_buffer_or_unset(labels, key, qt->group_by[group_by_id].label_keys[l], "[unset]");
|
|
}
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_NODE) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, rrdhost_hostname(qn->rrdhost));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_CONTEXT) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, rrdcontext_acquired_id(qc->rca));
|
|
}
|
|
|
|
if (group_by & RRDR_GROUP_BY_UNITS) {
|
|
if (buffer_strlen(key) != 0)
|
|
buffer_fast_strcat(key, ",", 1);
|
|
|
|
buffer_strcat(key, query_target_has_percentage_units(qt) ? "%" : rrdinstance_acquired_units(qi->ria));
|
|
}
|
|
}
|
|
}
|
|
|
|
struct rrdr_group_by_entry {
|
|
size_t priority;
|
|
size_t count;
|
|
STRING *id;
|
|
STRING *name;
|
|
STRING *units;
|
|
RRDR_DIMENSION_FLAGS od;
|
|
DICTIONARY *dl;
|
|
};
|
|
|
|
static RRDR *rrd2rrdr_group_by_initialize(ONEWAYALLOC *owa, QUERY_TARGET *qt) {
|
|
RRDR *r_tmp = NULL;
|
|
RRDR_OPTIONS options = qt->window.options;
|
|
|
|
if(qt->request.version < 2) {
|
|
// v1 query
|
|
RRDR *r = rrdr_create(owa, qt, qt->query.used, qt->window.points);
|
|
if(unlikely(!r)) {
|
|
internal_error(true, "QUERY: cannot create RRDR for %s, after=%ld, before=%ld, dimensions=%u, points=%zu",
|
|
qt->id, qt->window.after, qt->window.before, qt->query.used, qt->window.points);
|
|
return NULL;
|
|
}
|
|
r->group_by.r = NULL;
|
|
|
|
for(size_t d = 0; d < qt->query.used ; d++) {
|
|
QUERY_METRIC *qm = query_metric(qt, d);
|
|
QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
|
|
r->di[d] = rrdmetric_acquired_id_dup(qd->rma);
|
|
r->dn[d] = rrdmetric_acquired_name_dup(qd->rma);
|
|
}
|
|
|
|
rrd2rrdr_set_timestamps(r);
|
|
return r;
|
|
}
|
|
// v2 query
|
|
|
|
// parse all the group-by label keys
|
|
for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++) {
|
|
if (qt->request.group_by[g].group_by & RRDR_GROUP_BY_LABEL &&
|
|
qt->request.group_by[g].group_by_label && *qt->request.group_by[g].group_by_label)
|
|
qt->group_by[g].used = quoted_strings_splitter(
|
|
qt->request.group_by[g].group_by_label, qt->group_by[g].label_keys,
|
|
GROUP_BY_MAX_LABEL_KEYS, group_by_label_is_space);
|
|
|
|
if (!qt->group_by[g].used)
|
|
qt->request.group_by[g].group_by &= ~RRDR_GROUP_BY_LABEL;
|
|
}
|
|
|
|
// make sure there are valid group-by methods
|
|
bool query_has_percentage_of_instance = false;
|
|
for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES - 1 ;g++) {
|
|
if(!(qt->request.group_by[g].group_by & SUPPORTED_GROUP_BY_METHODS))
|
|
qt->request.group_by[g].group_by = (g == 0) ? RRDR_GROUP_BY_DIMENSION : RRDR_GROUP_BY_NONE;
|
|
|
|
if(qt->request.group_by[g].group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
|
|
query_has_percentage_of_instance = true;
|
|
}
|
|
|
|
// merge all group-by options to upper levels
|
|
for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES - 1 ;g++) {
|
|
if(qt->request.group_by[g].group_by == RRDR_GROUP_BY_NONE)
|
|
continue;
|
|
|
|
if(qt->request.group_by[g].group_by == RRDR_GROUP_BY_SELECTED) {
|
|
for (size_t r = g + 1; r < MAX_QUERY_GROUP_BY_PASSES; r++)
|
|
qt->request.group_by[r].group_by = RRDR_GROUP_BY_NONE;
|
|
}
|
|
else {
|
|
for (size_t r = g + 1; r < MAX_QUERY_GROUP_BY_PASSES; r++) {
|
|
if (qt->request.group_by[r].group_by == RRDR_GROUP_BY_NONE)
|
|
continue;
|
|
|
|
if (qt->request.group_by[r].group_by != RRDR_GROUP_BY_SELECTED) {
|
|
if(qt->request.group_by[r].group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE)
|
|
qt->request.group_by[g].group_by |= RRDR_GROUP_BY_INSTANCE;
|
|
else
|
|
qt->request.group_by[g].group_by |= qt->request.group_by[r].group_by;
|
|
|
|
if(qt->request.group_by[r].group_by & RRDR_GROUP_BY_LABEL) {
|
|
for (size_t lr = 0; lr < qt->group_by[r].used; lr++) {
|
|
bool found = false;
|
|
for (size_t lg = 0; lg < qt->group_by[g].used; lg++) {
|
|
if (strcmp(qt->group_by[g].label_keys[lg], qt->group_by[r].label_keys[lr]) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found && qt->group_by[g].used < GROUP_BY_MAX_LABEL_KEYS * MAX_QUERY_GROUP_BY_PASSES)
|
|
qt->group_by[g].label_keys[qt->group_by[g].used++] = qt->group_by[r].label_keys[lr];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int added = 0;
|
|
RRDR *first_r = NULL, *last_r = NULL;
|
|
BUFFER *key = buffer_create(0, NULL);
|
|
struct rrdr_group_by_entry *entries = onewayalloc_mallocz(owa, qt->query.used * sizeof(struct rrdr_group_by_entry));
|
|
DICTIONARY *groups = dictionary_create(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE);
|
|
DICTIONARY *label_keys = NULL;
|
|
|
|
for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++) {
|
|
RRDR_GROUP_BY group_by = qt->request.group_by[g].group_by;
|
|
|
|
if(group_by == RRDR_GROUP_BY_NONE)
|
|
break;
|
|
|
|
memset(entries, 0, qt->query.used * sizeof(struct rrdr_group_by_entry));
|
|
dictionary_flush(groups);
|
|
added = 0;
|
|
|
|
size_t hidden_dimensions = 0;
|
|
bool final_grouping = (g == MAX_QUERY_GROUP_BY_PASSES - 1 || qt->request.group_by[g + 1].group_by == RRDR_GROUP_BY_NONE) ? true : false;
|
|
|
|
if (final_grouping && (options & RRDR_OPTION_GROUP_BY_LABELS))
|
|
label_keys = dictionary_create_advanced(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_DONT_OVERWRITE_VALUE, NULL, 0);
|
|
|
|
QUERY_INSTANCE *last_qi = NULL;
|
|
size_t priority = 0;
|
|
time_t update_every_max = 0;
|
|
for (size_t d = 0; d < qt->query.used; d++) {
|
|
QUERY_METRIC *qm = query_metric(qt, d);
|
|
QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
|
|
QUERY_INSTANCE *qi = query_instance(qt, qm->link.query_instance_id);
|
|
QUERY_CONTEXT *qc = query_context(qt, qm->link.query_context_id);
|
|
QUERY_NODE *qn = query_node(qt, qm->link.query_node_id);
|
|
|
|
if (qi != last_qi) {
|
|
last_qi = qi;
|
|
|
|
time_t update_every = rrdinstance_acquired_update_every(qi->ria);
|
|
if (update_every > update_every_max)
|
|
update_every_max = update_every;
|
|
}
|
|
|
|
priority = qd->priority;
|
|
|
|
if(qm->status & RRDR_DIMENSION_HIDDEN)
|
|
hidden_dimensions++;
|
|
|
|
// --------------------------------------------------------------------
|
|
// generate the group by key
|
|
|
|
query_group_by_make_dimension_key(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_instance);
|
|
|
|
// lookup the key in the dictionary
|
|
|
|
int pos = -1;
|
|
int *set = dictionary_set(groups, buffer_tostring(key), &pos, sizeof(pos));
|
|
if (*set == -1) {
|
|
// the key just added to the dictionary
|
|
|
|
*set = pos = added++;
|
|
|
|
// ----------------------------------------------------------------
|
|
// generate the dimension id
|
|
|
|
query_group_by_make_dimension_id(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_instance);
|
|
entries[pos].id = string_strdupz(buffer_tostring(key));
|
|
|
|
// ----------------------------------------------------------------
|
|
// generate the dimension name
|
|
|
|
query_group_by_make_dimension_name(key, group_by, g, qt, qn, qc, qi, qd, qm, query_has_percentage_of_instance);
|
|
entries[pos].name = string_strdupz(buffer_tostring(key));
|
|
|
|
// add the rest of the info
|
|
entries[pos].units = rrdinstance_acquired_units_dup(qi->ria);
|
|
entries[pos].priority = priority;
|
|
|
|
if (label_keys) {
|
|
entries[pos].dl = dictionary_create_advanced(
|
|
DICT_OPTION_SINGLE_THREADED | DICT_OPTION_FIXED_SIZE | DICT_OPTION_DONT_OVERWRITE_VALUE,
|
|
NULL, sizeof(struct group_by_label_key));
|
|
dictionary_register_insert_callback(entries[pos].dl, group_by_label_key_insert_cb, label_keys);
|
|
dictionary_register_delete_callback(entries[pos].dl, group_by_label_key_delete_cb, label_keys);
|
|
}
|
|
} else {
|
|
// the key found in the dictionary
|
|
pos = *set;
|
|
}
|
|
|
|
entries[pos].count++;
|
|
|
|
if (unlikely(priority < entries[pos].priority))
|
|
entries[pos].priority = priority;
|
|
|
|
if(g > 0)
|
|
last_r->dgbs[qm->grouped_as.slot] = pos;
|
|
else
|
|
qm->grouped_as.first_slot = pos;
|
|
|
|
qm->grouped_as.slot = pos;
|
|
qm->grouped_as.id = entries[pos].id;
|
|
qm->grouped_as.name = entries[pos].name;
|
|
qm->grouped_as.units = entries[pos].units;
|
|
|
|
// copy the dimension flags decided by the query target
|
|
// we need this, because if a dimension is explicitly selected
|
|
// the query target adds to it the non-zero flag
|
|
qm->status |= RRDR_DIMENSION_GROUPED;
|
|
|
|
if(query_has_percentage_of_instance)
|
|
// when the query has percentage of instance
|
|
// there will be no hidden dimensions in the final query
|
|
// so we have to remove the hidden flag from all dimensions
|
|
entries[pos].od |= qm->status & ~RRDR_DIMENSION_HIDDEN;
|
|
else
|
|
entries[pos].od |= qm->status;
|
|
|
|
if (entries[pos].dl)
|
|
rrdlabels_walkthrough_read(rrdinstance_acquired_labels(qi->ria),
|
|
rrdlabels_traversal_cb_to_group_by_label_key, entries[pos].dl);
|
|
}
|
|
|
|
RRDR *r = rrdr_create(owa, qt, added, qt->window.points);
|
|
if (!r) {
|
|
internal_error(true,
|
|
"QUERY: cannot create group by RRDR for %s, after=%ld, before=%ld, dimensions=%d, points=%zu",
|
|
qt->id, qt->window.after, qt->window.before, added, qt->window.points);
|
|
goto cleanup;
|
|
}
|
|
|
|
bool hidden_dimension_on_percentage_of_instance = hidden_dimensions && (group_by & RRDR_GROUP_BY_PERCENTAGE_OF_INSTANCE);
|
|
|
|
// prevent double cleanup in case of error
|
|
added = 0;
|
|
|
|
if(!last_r)
|
|
first_r = last_r = r;
|
|
else
|
|
last_r->group_by.r = r;
|
|
|
|
last_r = r;
|
|
|
|
rrd2rrdr_set_timestamps(r);
|
|
r->dp = onewayalloc_callocz(owa, r->d, sizeof(*r->dp));
|
|
r->dview = onewayalloc_callocz(owa, r->d, sizeof(*r->dview));
|
|
r->dgbc = onewayalloc_callocz(owa, r->d, sizeof(*r->dgbc));
|
|
r->gbc = onewayalloc_callocz(owa, r->n * r->d, sizeof(*r->gbc));
|
|
r->dqp = onewayalloc_callocz(owa, r->d, sizeof(STORAGE_POINT));
|
|
|
|
if(hidden_dimension_on_percentage_of_instance)
|
|
// this is where we are going to group the hidden dimensions
|
|
r->vh = onewayalloc_mallocz(owa, r->n * r->d * sizeof(*r->vh));
|
|
|
|
if(!final_grouping)
|
|
// this is where we are going to store the slot in the next RRDR
|
|
// that we are going to group by the dimension of this RRDR
|
|
r->dgbs = onewayalloc_callocz(owa, r->d, sizeof(*r->dgbs));
|
|
|
|
if (label_keys) {
|
|
r->dl = onewayalloc_callocz(owa, r->d, sizeof(DICTIONARY *));
|
|
r->label_keys = label_keys;
|
|
label_keys = NULL;
|
|
}
|
|
|
|
// zero r (dimension options, names, and ids)
|
|
// this is required, because group-by may lead to empty dimensions
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
r->di[d] = entries[d].id;
|
|
r->dn[d] = entries[d].name;
|
|
|
|
r->od[d] = entries[d].od;
|
|
r->du[d] = entries[d].units;
|
|
r->dp[d] = entries[d].priority;
|
|
r->dgbc[d] = entries[d].count;
|
|
|
|
if (r->dl)
|
|
r->dl[d] = entries[d].dl;
|
|
}
|
|
|
|
// initialize partial trimming
|
|
r->partial_data_trimming.max_update_every = update_every_max;
|
|
r->partial_data_trimming.expected_after =
|
|
(!(qt->window.options & RRDR_OPTION_RETURN_RAW) &&
|
|
qt->window.before >= qt->window.now - update_every_max) ?
|
|
qt->window.before - update_every_max :
|
|
qt->window.before;
|
|
r->partial_data_trimming.trimmed_after = qt->window.before;
|
|
|
|
// make all values empty
|
|
for (size_t i = 0; i != r->n; i++) {
|
|
NETDATA_DOUBLE *cn = &r->v[i * r->d];
|
|
RRDR_VALUE_FLAGS *co = &r->o[i * r->d];
|
|
NETDATA_DOUBLE *ar = &r->ar[i * r->d];
|
|
NETDATA_DOUBLE *vh = r->vh ? &r->vh[i * r->d] : NULL;
|
|
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
cn[d] = NAN;
|
|
ar[d] = 0.0;
|
|
co[d] = RRDR_VALUE_EMPTY;
|
|
|
|
if(vh)
|
|
*vh = NAN;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!first_r || !last_r)
|
|
goto cleanup;
|
|
|
|
r_tmp = rrdr_create(owa, qt, 1, qt->window.points);
|
|
if (!r_tmp) {
|
|
internal_error(true,
|
|
"QUERY: cannot create group by temporary RRDR for %s, after=%ld, before=%ld, dimensions=%d, points=%zu",
|
|
qt->id, qt->window.after, qt->window.before, 1, qt->window.points);
|
|
goto cleanup;
|
|
}
|
|
rrd2rrdr_set_timestamps(r_tmp);
|
|
r_tmp->group_by.r = first_r;
|
|
|
|
cleanup:
|
|
if(!first_r || !last_r || !r_tmp) {
|
|
if(r_tmp) {
|
|
r_tmp->group_by.r = NULL;
|
|
rrdr_free(owa, r_tmp);
|
|
}
|
|
|
|
if(first_r) {
|
|
RRDR *r = first_r;
|
|
while (r) {
|
|
r_tmp = r->group_by.r;
|
|
r->group_by.r = NULL;
|
|
rrdr_free(owa, r);
|
|
r = r_tmp;
|
|
}
|
|
}
|
|
|
|
if(entries && added) {
|
|
for (int d = 0; d < added; d++) {
|
|
string_freez(entries[d].id);
|
|
string_freez(entries[d].name);
|
|
string_freez(entries[d].units);
|
|
dictionary_destroy(entries[d].dl);
|
|
}
|
|
}
|
|
dictionary_destroy(label_keys);
|
|
|
|
first_r = last_r = r_tmp = NULL;
|
|
}
|
|
|
|
buffer_free(key);
|
|
onewayalloc_freez(owa, entries);
|
|
dictionary_destroy(groups);
|
|
|
|
return r_tmp;
|
|
}
|
|
|
|
static void rrd2rrdr_group_by_add_metric(RRDR *r_dst, size_t d_dst, RRDR *r_tmp, size_t d_tmp,
|
|
RRDR_GROUP_BY_FUNCTION group_by_aggregate_function,
|
|
STORAGE_POINT *query_points, size_t pass __maybe_unused) {
|
|
if(!r_tmp || r_dst == r_tmp || !(r_tmp->od[d_tmp] & RRDR_DIMENSION_QUERIED))
|
|
return;
|
|
|
|
internal_fatal(r_dst->n != r_tmp->n, "QUERY: group-by source and destination do not have the same number of rows");
|
|
internal_fatal(d_dst >= r_dst->d, "QUERY: group-by destination dimension number exceeds destination RRDR size");
|
|
internal_fatal(d_tmp >= r_tmp->d, "QUERY: group-by source dimension number exceeds source RRDR size");
|
|
internal_fatal(!r_dst->dqp, "QUERY: group-by destination is not properly prepared (missing dqp array)");
|
|
internal_fatal(!r_dst->gbc, "QUERY: group-by destination is not properly prepared (missing gbc array)");
|
|
|
|
bool hidden_dimension_on_percentage_of_instance = (r_tmp->od[d_tmp] & RRDR_DIMENSION_HIDDEN) && r_dst->vh;
|
|
|
|
if(!hidden_dimension_on_percentage_of_instance) {
|
|
r_dst->od[d_dst] |= r_tmp->od[d_tmp];
|
|
storage_point_merge_to(r_dst->dqp[d_dst], *query_points);
|
|
}
|
|
|
|
// do the group_by
|
|
for(size_t i = 0; i != rrdr_rows(r_tmp) ; i++) {
|
|
|
|
size_t idx_tmp = i * r_tmp->d + d_tmp;
|
|
NETDATA_DOUBLE n_tmp = r_tmp->v[ idx_tmp ];
|
|
RRDR_VALUE_FLAGS o_tmp = r_tmp->o[ idx_tmp ];
|
|
NETDATA_DOUBLE ar_tmp = r_tmp->ar[ idx_tmp ];
|
|
|
|
if(o_tmp & RRDR_VALUE_EMPTY)
|
|
continue;
|
|
|
|
size_t idx_dst = i * r_dst->d + d_dst;
|
|
NETDATA_DOUBLE *cn = (hidden_dimension_on_percentage_of_instance) ? &r_dst->vh[ idx_dst ] : &r_dst->v[ idx_dst ];
|
|
RRDR_VALUE_FLAGS *co = &r_dst->o[ idx_dst ];
|
|
NETDATA_DOUBLE *ar = &r_dst->ar[ idx_dst ];
|
|
uint32_t *gbc = &r_dst->gbc[ idx_dst ];
|
|
|
|
switch(group_by_aggregate_function) {
|
|
default:
|
|
case RRDR_GROUP_BY_FUNCTION_AVERAGE:
|
|
case RRDR_GROUP_BY_FUNCTION_SUM:
|
|
if(isnan(*cn))
|
|
*cn = n_tmp;
|
|
else
|
|
*cn += n_tmp;
|
|
break;
|
|
|
|
case RRDR_GROUP_BY_FUNCTION_MIN:
|
|
if(isnan(*cn) || n_tmp < *cn)
|
|
*cn = n_tmp;
|
|
break;
|
|
|
|
case RRDR_GROUP_BY_FUNCTION_MAX:
|
|
if(isnan(*cn) || n_tmp > *cn)
|
|
*cn = n_tmp;
|
|
break;
|
|
}
|
|
|
|
if(!hidden_dimension_on_percentage_of_instance) {
|
|
*co &= ~RRDR_VALUE_EMPTY;
|
|
*co |= (o_tmp & (RRDR_VALUE_RESET | RRDR_VALUE_PARTIAL));
|
|
*ar += ar_tmp;
|
|
(*gbc)++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rrdr2rrdr_group_by_partial_trimming(RRDR *r) {
|
|
time_t trimmable_after = r->partial_data_trimming.expected_after;
|
|
|
|
// find the point just before the trimmable ones
|
|
ssize_t i = (ssize_t)r->n - 1;
|
|
for( ; i >= 0 ;i--) {
|
|
if (r->t[i] < trimmable_after)
|
|
break;
|
|
}
|
|
|
|
if(unlikely(i < 0))
|
|
return;
|
|
|
|
size_t last_row_gbc = 0;
|
|
for (; i < (ssize_t)r->n; i++) {
|
|
size_t row_gbc = 0;
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
|
|
continue;
|
|
|
|
row_gbc += r->gbc[ i * r->d + d ];
|
|
}
|
|
|
|
if (unlikely(r->t[i] >= trimmable_after && row_gbc < last_row_gbc)) {
|
|
// discard the rest of the points
|
|
r->partial_data_trimming.trimmed_after = r->t[i];
|
|
r->rows = i;
|
|
break;
|
|
}
|
|
else
|
|
last_row_gbc = row_gbc;
|
|
}
|
|
}
|
|
|
|
static void rrdr2rrdr_group_by_calculate_percentage_of_instance(RRDR *r) {
|
|
if(!r->vh)
|
|
return;
|
|
|
|
for(size_t i = 0; i < r->n ;i++) {
|
|
NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
|
|
NETDATA_DOUBLE *ch = &r->vh[ i * r->d ];
|
|
|
|
for(size_t d = 0; d < r->d ;d++) {
|
|
NETDATA_DOUBLE n = cn[d];
|
|
NETDATA_DOUBLE h = ch[d];
|
|
|
|
if(isnan(n))
|
|
cn[d] = 0.0;
|
|
|
|
else if(isnan(h))
|
|
cn[d] = 100.0;
|
|
|
|
else
|
|
cn[d] = n * 100.0 / (n + h);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rrd2rrdr_convert_to_percentage(RRDR *r) {
|
|
size_t global_min_max_values = 0;
|
|
NETDATA_DOUBLE global_min = NAN, global_max = NAN;
|
|
|
|
for(size_t i = 0; i != r->n ;i++) {
|
|
NETDATA_DOUBLE *cn = &r->v[ i * r->d ];
|
|
RRDR_VALUE_FLAGS *co = &r->o[ i * r->d ];
|
|
|
|
NETDATA_DOUBLE total = 0;
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
|
|
continue;
|
|
|
|
if(co[d] & RRDR_VALUE_EMPTY)
|
|
continue;
|
|
|
|
total += cn[d];
|
|
}
|
|
|
|
if(total == 0.0)
|
|
total = 1.0;
|
|
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
|
|
continue;
|
|
|
|
if(co[d] & RRDR_VALUE_EMPTY)
|
|
continue;
|
|
|
|
NETDATA_DOUBLE n = cn[d];
|
|
n = cn[d] = n * 100.0 / total;
|
|
|
|
if(unlikely(!global_min_max_values++))
|
|
global_min = global_max = n;
|
|
else {
|
|
if(n < global_min)
|
|
global_min = n;
|
|
if(n > global_max)
|
|
global_max = n;
|
|
}
|
|
}
|
|
}
|
|
|
|
r->view.min = global_min;
|
|
r->view.max = global_max;
|
|
|
|
if(!r->dview)
|
|
// v1 query
|
|
return;
|
|
|
|
// v2 query
|
|
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
|
|
continue;
|
|
|
|
size_t count = 0;
|
|
NETDATA_DOUBLE min = 0.0, max = 0.0, sum = 0.0, ars = 0.0;
|
|
for(size_t i = 0; i != r->rows ;i++) { // we use r->rows to respect trimming
|
|
size_t idx = i * r->d + d;
|
|
|
|
RRDR_VALUE_FLAGS o = r->o[ idx ];
|
|
|
|
if (o & RRDR_VALUE_EMPTY)
|
|
continue;
|
|
|
|
NETDATA_DOUBLE ar = r->ar[ idx ];
|
|
ars += ar;
|
|
|
|
NETDATA_DOUBLE n = r->v[ idx ];
|
|
sum += n;
|
|
|
|
if(!count++)
|
|
min = max = n;
|
|
else {
|
|
if(n < min)
|
|
min = n;
|
|
if(n > max)
|
|
max = n;
|
|
}
|
|
}
|
|
|
|
r->dview[d] = (STORAGE_POINT) {
|
|
.sum = sum,
|
|
.count = count,
|
|
.min = min,
|
|
.max = max,
|
|
.anomaly_count = (size_t)(ars * (NETDATA_DOUBLE)count),
|
|
};
|
|
}
|
|
}
|
|
|
|
static RRDR *rrd2rrdr_group_by_finalize(RRDR *r_tmp) {
|
|
QUERY_TARGET *qt = r_tmp->internal.qt;
|
|
RRDR_OPTIONS options = qt->window.options;
|
|
|
|
if(!r_tmp->group_by.r) {
|
|
// v1 query
|
|
if(options & RRDR_OPTION_PERCENTAGE)
|
|
rrd2rrdr_convert_to_percentage(r_tmp);
|
|
return r_tmp;
|
|
}
|
|
// v2 query
|
|
|
|
// do the additional passes on RRDRs
|
|
RRDR *last_r = r_tmp->group_by.r;
|
|
rrdr2rrdr_group_by_calculate_percentage_of_instance(last_r);
|
|
|
|
RRDR *r = last_r->group_by.r;
|
|
size_t pass = 0;
|
|
while(r) {
|
|
pass++;
|
|
for(size_t d = 0; d < last_r->d ;d++) {
|
|
rrd2rrdr_group_by_add_metric(r, last_r->dgbs[d], last_r, d,
|
|
qt->request.group_by[pass].aggregation,
|
|
&last_r->dqp[d], pass);
|
|
}
|
|
rrdr2rrdr_group_by_calculate_percentage_of_instance(r);
|
|
|
|
last_r = r;
|
|
r = last_r->group_by.r;
|
|
}
|
|
|
|
// free all RRDRs except the last one
|
|
r = r_tmp;
|
|
while(r != last_r) {
|
|
r_tmp = r->group_by.r;
|
|
r->group_by.r = NULL;
|
|
rrdr_free(r->internal.owa, r);
|
|
r = r_tmp;
|
|
}
|
|
r = last_r;
|
|
|
|
// find the final aggregation
|
|
RRDR_GROUP_BY_FUNCTION aggregation = qt->request.group_by[0].aggregation;
|
|
for(size_t g = 0; g < MAX_QUERY_GROUP_BY_PASSES ;g++)
|
|
if(qt->request.group_by[g].group_by != RRDR_GROUP_BY_NONE)
|
|
aggregation = qt->request.group_by[g].aggregation;
|
|
|
|
if(!(options & RRDR_OPTION_RETURN_RAW) && r->partial_data_trimming.expected_after < qt->window.before)
|
|
rrdr2rrdr_group_by_partial_trimming(r);
|
|
|
|
// apply averaging, remove RRDR_VALUE_EMPTY, find the non-zero dimensions, min and max
|
|
size_t global_min_max_values = 0;
|
|
size_t dimensions_nonzero = 0;
|
|
NETDATA_DOUBLE global_min = NAN, global_max = NAN;
|
|
for (size_t d = 0; d < r->d; d++) {
|
|
if (unlikely(!(r->od[d] & RRDR_DIMENSION_QUERIED)))
|
|
continue;
|
|
|
|
size_t points_nonzero = 0;
|
|
NETDATA_DOUBLE min = 0, max = 0, sum = 0, ars = 0;
|
|
size_t count = 0;
|
|
|
|
for(size_t i = 0; i != r->n ;i++) {
|
|
size_t idx = i * r->d + d;
|
|
|
|
NETDATA_DOUBLE *cn = &r->v[ idx ];
|
|
RRDR_VALUE_FLAGS *co = &r->o[ idx ];
|
|
NETDATA_DOUBLE *ar = &r->ar[ idx ];
|
|
uint32_t gbc = r->gbc[ idx ];
|
|
|
|
if(likely(gbc)) {
|
|
*co &= ~RRDR_VALUE_EMPTY;
|
|
|
|
if(gbc != r->dgbc[d])
|
|
*co |= RRDR_VALUE_PARTIAL;
|
|
|
|
NETDATA_DOUBLE n;
|
|
|
|
sum += *cn;
|
|
ars += *ar;
|
|
|
|
if(aggregation == RRDR_GROUP_BY_FUNCTION_AVERAGE && !query_target_aggregatable(qt))
|
|
n = (*cn /= gbc);
|
|
else
|
|
n = *cn;
|
|
|
|
if(!query_target_aggregatable(qt))
|
|
*ar /= gbc;
|
|
|
|
if(islessgreater(n, 0.0))
|
|
points_nonzero++;
|
|
|
|
if(unlikely(!count))
|
|
min = max = n;
|
|
else {
|
|
if(n < min)
|
|
min = n;
|
|
|
|
if(n > max)
|
|
max = n;
|
|
}
|
|
|
|
if(unlikely(!global_min_max_values++))
|
|
global_min = global_max = n;
|
|
else {
|
|
if(n < global_min)
|
|
global_min = n;
|
|
|
|
if(n > global_max)
|
|
global_max = n;
|
|
}
|
|
|
|
count += gbc;
|
|
}
|
|
}
|
|
|
|
if(points_nonzero) {
|
|
r->od[d] |= RRDR_DIMENSION_NONZERO;
|
|
dimensions_nonzero++;
|
|
}
|
|
|
|
r->dview[d] = (STORAGE_POINT) {
|
|
.sum = sum,
|
|
.count = count,
|
|
.min = min,
|
|
.max = max,
|
|
.anomaly_count = (size_t)(ars * RRDR_DVIEW_ANOMALY_COUNT_MULTIPLIER / 100.0),
|
|
};
|
|
}
|
|
|
|
r->view.min = global_min;
|
|
r->view.max = global_max;
|
|
|
|
if(!dimensions_nonzero && (qt->window.options & RRDR_OPTION_NONZERO)) {
|
|
// all dimensions are zero
|
|
// remove the nonzero option
|
|
qt->window.options &= ~RRDR_OPTION_NONZERO;
|
|
}
|
|
|
|
if(options & RRDR_OPTION_PERCENTAGE)
|
|
rrd2rrdr_convert_to_percentage(r);
|
|
|
|
// update query instance counts in query host and query context
|
|
{
|
|
size_t h = 0, c = 0, i = 0;
|
|
for(; h < qt->nodes.used ; h++) {
|
|
QUERY_NODE *qn = &qt->nodes.array[h];
|
|
|
|
for(; c < qt->contexts.used ;c++) {
|
|
QUERY_CONTEXT *qc = &qt->contexts.array[c];
|
|
|
|
if(!rrdcontext_acquired_belongs_to_host(qc->rca, qn->rrdhost))
|
|
break;
|
|
|
|
for(; i < qt->instances.used ;i++) {
|
|
QUERY_INSTANCE *qi = &qt->instances.array[i];
|
|
|
|
if(!rrdinstance_acquired_belongs_to_context(qi->ria, qc->rca))
|
|
break;
|
|
|
|
if(qi->metrics.queried) {
|
|
qc->instances.queried++;
|
|
qn->instances.queried++;
|
|
}
|
|
else if(qi->metrics.failed) {
|
|
qc->instances.failed++;
|
|
qn->instances.failed++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// query entry point
|
|
|
|
RRDR *rrd2rrdr_legacy(
|
|
ONEWAYALLOC *owa,
|
|
RRDSET *st, size_t points, time_t after, time_t before,
|
|
RRDR_TIME_GROUPING group_method, time_t resampling_time, RRDR_OPTIONS options, const char *dimensions,
|
|
const char *group_options, time_t timeout_ms, size_t tier, QUERY_SOURCE query_source,
|
|
STORAGE_PRIORITY priority) {
|
|
|
|
QUERY_TARGET_REQUEST qtr = {
|
|
.version = 1,
|
|
.st = st,
|
|
.points = points,
|
|
.after = after,
|
|
.before = before,
|
|
.time_group_method = group_method,
|
|
.resampling_time = resampling_time,
|
|
.options = options,
|
|
.dimensions = dimensions,
|
|
.time_group_options = group_options,
|
|
.timeout_ms = timeout_ms,
|
|
.tier = tier,
|
|
.query_source = query_source,
|
|
.priority = priority,
|
|
};
|
|
|
|
QUERY_TARGET *qt = query_target_create(&qtr);
|
|
RRDR *r = rrd2rrdr(owa, qt);
|
|
if(!r) {
|
|
query_target_release(qt);
|
|
return NULL;
|
|
}
|
|
|
|
r->internal.release_with_rrdr_qt = qt;
|
|
return r;
|
|
}
|
|
|
|
RRDR *rrd2rrdr(ONEWAYALLOC *owa, QUERY_TARGET *qt) {
|
|
if(!qt || !owa)
|
|
return NULL;
|
|
|
|
// qt.window members are the WANTED ones.
|
|
// qt.request members are the REQUESTED ones.
|
|
|
|
RRDR *r_tmp = rrd2rrdr_group_by_initialize(owa, qt);
|
|
if(!r_tmp)
|
|
return NULL;
|
|
|
|
// the RRDR we group-by at
|
|
RRDR *r = (r_tmp->group_by.r) ? r_tmp->group_by.r : r_tmp;
|
|
|
|
// the final RRDR to return to callers
|
|
RRDR *last_r = r_tmp;
|
|
while(last_r->group_by.r)
|
|
last_r = last_r->group_by.r;
|
|
|
|
if(qt->window.relative)
|
|
last_r->view.flags |= RRDR_RESULT_FLAG_RELATIVE;
|
|
else
|
|
last_r->view.flags |= RRDR_RESULT_FLAG_ABSOLUTE;
|
|
|
|
// -------------------------------------------------------------------------
|
|
// assign the processor functions
|
|
rrdr_set_grouping_function(r_tmp, qt->window.time_group_method);
|
|
|
|
// allocate any memory required by the grouping method
|
|
r_tmp->time_grouping.create(r_tmp, qt->window.time_group_options);
|
|
|
|
// -------------------------------------------------------------------------
|
|
// do the work for each dimension
|
|
|
|
time_t max_after = 0, min_before = 0;
|
|
size_t max_rows = 0;
|
|
|
|
long dimensions_used = 0, dimensions_nonzero = 0;
|
|
size_t last_db_points_read = 0;
|
|
size_t last_result_points_generated = 0;
|
|
|
|
internal_fatal(released_ops, "QUERY: released_ops should be NULL when the query starts");
|
|
|
|
QUERY_ENGINE_OPS **ops = NULL;
|
|
if(qt->query.used)
|
|
ops = onewayalloc_callocz(owa, qt->query.used, sizeof(QUERY_ENGINE_OPS *));
|
|
|
|
size_t capacity = libuv_worker_threads * 10;
|
|
size_t max_queries_to_prepare = (qt->query.used > (capacity - 1)) ? (capacity - 1) : qt->query.used;
|
|
size_t queries_prepared = 0;
|
|
while(queries_prepared < max_queries_to_prepare) {
|
|
// preload another query
|
|
ops[queries_prepared] = rrd2rrdr_query_ops_prep(r_tmp, queries_prepared);
|
|
queries_prepared++;
|
|
}
|
|
|
|
QUERY_NODE *last_qn = NULL;
|
|
usec_t last_ut = now_monotonic_usec();
|
|
usec_t last_qn_ut = last_ut;
|
|
|
|
for(size_t d = 0; d < qt->query.used ; d++) {
|
|
QUERY_METRIC *qm = query_metric(qt, d);
|
|
QUERY_DIMENSION *qd = query_dimension(qt, qm->link.query_dimension_id);
|
|
QUERY_INSTANCE *qi = query_instance(qt, qm->link.query_instance_id);
|
|
QUERY_CONTEXT *qc = query_context(qt, qm->link.query_context_id);
|
|
QUERY_NODE *qn = query_node(qt, qm->link.query_node_id);
|
|
|
|
usec_t now_ut = last_ut;
|
|
if(qn != last_qn) {
|
|
if(last_qn)
|
|
last_qn->duration_ut = now_ut - last_qn_ut;
|
|
|
|
last_qn = qn;
|
|
last_qn_ut = now_ut;
|
|
}
|
|
|
|
if(queries_prepared < qt->query.used) {
|
|
// preload another query
|
|
ops[queries_prepared] = rrd2rrdr_query_ops_prep(r_tmp, queries_prepared);
|
|
queries_prepared++;
|
|
}
|
|
|
|
size_t dim_in_rrdr_tmp = (r_tmp != r) ? 0 : d;
|
|
|
|
// set the query target dimension options to rrdr
|
|
r_tmp->od[dim_in_rrdr_tmp] = qm->status;
|
|
|
|
// reset the grouping for the new dimension
|
|
r_tmp->time_grouping.reset(r_tmp);
|
|
|
|
if(ops[d]) {
|
|
rrd2rrdr_query_execute(r_tmp, dim_in_rrdr_tmp, ops[d]);
|
|
r_tmp->od[dim_in_rrdr_tmp] |= RRDR_DIMENSION_QUERIED;
|
|
|
|
now_ut = now_monotonic_usec();
|
|
qm->duration_ut = now_ut - last_ut;
|
|
last_ut = now_ut;
|
|
|
|
if(r_tmp != r) {
|
|
// copy back whatever got updated from the temporary r
|
|
|
|
// the query updates RRDR_DIMENSION_NONZERO
|
|
qm->status = r_tmp->od[dim_in_rrdr_tmp];
|
|
|
|
// the query updates these
|
|
r->view.min = r_tmp->view.min;
|
|
r->view.max = r_tmp->view.max;
|
|
r->view.after = r_tmp->view.after;
|
|
r->view.before = r_tmp->view.before;
|
|
r->rows = r_tmp->rows;
|
|
|
|
rrd2rrdr_group_by_add_metric(r, qm->grouped_as.first_slot, r_tmp, dim_in_rrdr_tmp,
|
|
qt->request.group_by[0].aggregation, &qm->query_points, 0);
|
|
}
|
|
|
|
rrd2rrdr_query_ops_release(ops[d]); // reuse this ops allocation
|
|
ops[d] = NULL;
|
|
|
|
qi->metrics.queried++;
|
|
qc->metrics.queried++;
|
|
qn->metrics.queried++;
|
|
|
|
qd->status |= QUERY_STATUS_QUERIED;
|
|
qm->status |= RRDR_DIMENSION_QUERIED;
|
|
|
|
if(qt->request.version >= 2) {
|
|
// we need to make the query points positive now
|
|
// since we will aggregate it across multiple dimensions
|
|
storage_point_make_positive(qm->query_points);
|
|
storage_point_merge_to(qi->query_points, qm->query_points);
|
|
storage_point_merge_to(qc->query_points, qm->query_points);
|
|
storage_point_merge_to(qn->query_points, qm->query_points);
|
|
storage_point_merge_to(qt->query_points, qm->query_points);
|
|
}
|
|
}
|
|
else {
|
|
qi->metrics.failed++;
|
|
qc->metrics.failed++;
|
|
qn->metrics.failed++;
|
|
|
|
qd->status |= QUERY_STATUS_FAILED;
|
|
qm->status |= RRDR_DIMENSION_FAILED;
|
|
|
|
continue;
|
|
}
|
|
|
|
global_statistics_rrdr_query_completed(
|
|
1,
|
|
r_tmp->stats.db_points_read - last_db_points_read,
|
|
r_tmp->stats.result_points_generated - last_result_points_generated,
|
|
qt->request.query_source);
|
|
|
|
last_db_points_read = r_tmp->stats.db_points_read;
|
|
last_result_points_generated = r_tmp->stats.result_points_generated;
|
|
|
|
if(qm->status & RRDR_DIMENSION_NONZERO)
|
|
dimensions_nonzero++;
|
|
|
|
// verify all dimensions are aligned
|
|
if(unlikely(!dimensions_used)) {
|
|
min_before = r->view.before;
|
|
max_after = r->view.after;
|
|
max_rows = r->rows;
|
|
}
|
|
else {
|
|
if(r->view.after != max_after) {
|
|
internal_error(true, "QUERY: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
rrdinstance_acquired_id(qi->ria), (size_t)max_after, rrdmetric_acquired_id(qd->rma), (size_t)r->view.after);
|
|
|
|
r->view.after = (r->view.after > max_after) ? r->view.after : max_after;
|
|
}
|
|
|
|
if(r->view.before != min_before) {
|
|
internal_error(true, "QUERY: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
rrdinstance_acquired_id(qi->ria), (size_t)min_before, rrdmetric_acquired_id(qd->rma), (size_t)r->view.before);
|
|
|
|
r->view.before = (r->view.before < min_before) ? r->view.before : min_before;
|
|
}
|
|
|
|
if(r->rows != max_rows) {
|
|
internal_error(true, "QUERY: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
|
|
rrdinstance_acquired_id(qi->ria), (size_t)max_rows, rrdmetric_acquired_id(qd->rma), (size_t)r->rows);
|
|
|
|
r->rows = (r->rows > max_rows) ? r->rows : max_rows;
|
|
}
|
|
}
|
|
|
|
dimensions_used++;
|
|
|
|
bool cancel = false;
|
|
if (qt->request.interrupt_callback && qt->request.interrupt_callback(qt->request.interrupt_callback_data)) {
|
|
cancel = true;
|
|
log_access("QUERY INTERRUPTED");
|
|
}
|
|
|
|
if (qt->request.timeout_ms && ((NETDATA_DOUBLE)(now_ut - qt->timings.received_ut) / 1000.0) > (NETDATA_DOUBLE)qt->request.timeout_ms) {
|
|
cancel = true;
|
|
log_access("QUERY CANCELED RUNTIME EXCEEDED %0.2f ms (LIMIT %lld ms)",
|
|
(NETDATA_DOUBLE)(now_ut - qt->timings.received_ut) / 1000.0, (long long)qt->request.timeout_ms);
|
|
}
|
|
|
|
if(cancel) {
|
|
r->view.flags |= RRDR_RESULT_FLAG_CANCEL;
|
|
|
|
for(size_t i = d + 1; i < queries_prepared ; i++) {
|
|
if(ops[i]) {
|
|
query_planer_finalize_remaining_plans(ops[i]);
|
|
rrd2rrdr_query_ops_release(ops[i]);
|
|
ops[i] = NULL;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// free all resources used by the grouping method
|
|
r_tmp->time_grouping.free(r_tmp);
|
|
|
|
// get the final RRDR to send to the caller
|
|
r = rrd2rrdr_group_by_finalize(r_tmp);
|
|
|
|
#ifdef NETDATA_INTERNAL_CHECKS
|
|
if (dimensions_used && !(r->view.flags & RRDR_RESULT_FLAG_CANCEL)) {
|
|
if(r->internal.log)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
r->internal.log);
|
|
|
|
if(r->rows != qt->window.points)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
"got 'points' is not wanted 'points'");
|
|
|
|
if(qt->window.aligned && (r->view.before % query_view_update_every(qt)) != 0)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
"'before' is not aligned but alignment is required");
|
|
|
|
// 'after' should not be aligned, since we start inside the first group
|
|
//if(qt->window.aligned && (r->after % group) != 0)
|
|
// rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group, qt->window.after, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
|
|
|
|
if(r->view.before != qt->window.before)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
"chart is not aligned to requested 'before'");
|
|
|
|
if(r->view.before != qt->window.before)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
"got 'before' is not wanted 'before'");
|
|
|
|
// reported 'after' varies, depending on group
|
|
if(r->view.after != qt->window.after)
|
|
rrd2rrdr_log_request_response_metadata(r, qt->window.options, qt->window.time_group_method, qt->window.aligned, qt->window.group, qt->request.resampling_time, qt->window.resampling_group,
|
|
qt->window.after, qt->request.after, qt->window.before, qt->request.before,
|
|
qt->request.points, qt->window.points, /*after_slot, before_slot,*/
|
|
"got 'after' is not wanted 'after'");
|
|
|
|
}
|
|
#endif
|
|
|
|
// free the query pipelining ops
|
|
for(size_t d = 0; d < qt->query.used ; d++) {
|
|
rrd2rrdr_query_ops_release(ops[d]);
|
|
ops[d] = NULL;
|
|
}
|
|
rrd2rrdr_query_ops_freeall(r);
|
|
internal_fatal(released_ops, "QUERY: released_ops should be NULL when the query ends");
|
|
|
|
onewayalloc_freez(owa, ops);
|
|
|
|
if(likely(dimensions_used && (qt->window.options & RRDR_OPTION_NONZERO) && !dimensions_nonzero))
|
|
// when all the dimensions are zero, we should return all of them
|
|
qt->window.options &= ~RRDR_OPTION_NONZERO;
|
|
|
|
qt->timings.executed_ut = now_monotonic_usec();
|
|
|
|
return r;
|
|
}
|