0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-25 13:33:48 +00:00
netdata_netdata/daemon/unit_test.c
Markos Fountoulakis 6ca6d840dd Database engine ()
* Database engine prototype version 0

* Database engine initial integration with netdata POC

* Scalable database engine with file and memory management.

* Database engine integration with netdata

* Added MIN MAX definitions to fix alpine build of travis CI

* Bugfix for backends and new DB engine, remove useless rrdset_time2slot() calls and erroneous checks

* DB engine disk protocol correction

* Moved DB engine storage file location to /var/cache/netdata/{host}/dbengine

* Fix configure to require openSSL for DB engine

* Fix netdata daemon health not holding read lock when iterating chart dimensions

* Optimized query API for new DB engine and old netdata DB fallback code-path

* netdata database internal query API improvements and cleanup

* Bugfix for DB engine queries returning empty values

* Added netdata internal check for data queries for old and new DB

* Added statistics to DB engine and fixed memory corruption bug

* Added preliminary charts for DB engine statistics

* Changed DB engine ratio statistics to incremental

* Added netdata statistics charts for DB engine internal statistics

* Fix for netdata not compiling successfully when missing dbengine dependencies

* Added DB engine functional test to netdata unittest command parameter

* Implemented DB engine dataset generator based on example.random chart

* Fix build error in CI

* Support older versions of libuv1

* Fixes segmentation fault when using multiple DB engine instances concurrently

* Fix memory corruption bug

* Fixed createdataset advanced option not exiting

* Fix for DB engine not working on FreeBSD

* Support FreeBSD library paths of new dependencies

* Workaround for unsupported O_DIRECT in OS X

* Fix unittest crashing during cleanup

* Disable DB engine FS caching in Apple OS X since O_DIRECT is not available

* Fix segfault when unittest and DB engine dataset generator don't have permissions to create temporary host

* Modified DB engine dataset generator to create multiple files

* Toned down overzealous page cache prefetcher

* Reduce internal memory fragmentation for page-cache data pages

* Added documentation describing the DB engine

* Documentation bugfixes

* Fixed unit tests compilation errors since last rebase

* Added note to back-up the DB engine files in documentation

* Added codacy fix.

* Support old gcc versions for atomic counters in DB engine
2019-05-15 08:28:06 +03:00

1780 lines
No EOL
61 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "common.h"
static int check_number_printing(void) {
struct {
calculated_number n;
const char *correct;
} values[] = {
{ .n = 0, .correct = "0" },
{ .n = 0.0000001, .correct = "0.0000001" },
{ .n = 0.00000009, .correct = "0.0000001" },
{ .n = 0.000000001, .correct = "0" },
{ .n = 99.99999999999999999, .correct = "100" },
{ .n = -99.99999999999999999, .correct = "-100" },
{ .n = 123.4567890123456789, .correct = "123.456789" },
{ .n = 9999.9999999, .correct = "9999.9999999" },
{ .n = -9999.9999999, .correct = "-9999.9999999" },
{ .n = 0, .correct = NULL },
};
char netdata[50], system[50];
int i, failed = 0;
for(i = 0; values[i].correct ; i++) {
print_calculated_number(netdata, values[i].n);
snprintfz(system, 49, "%0.12" LONG_DOUBLE_MODIFIER, (LONG_DOUBLE)values[i].n);
int ok = 1;
if(strcmp(netdata, values[i].correct) != 0) {
ok = 0;
failed++;
}
fprintf(stderr, "'%s' (system) printed as '%s' (netdata): %s\n", system, netdata, ok?"OK":"FAILED");
}
if(failed) return 1;
return 0;
}
static int check_rrdcalc_comparisons(void) {
RRDCALC_STATUS a, b;
// make sure calloc() sets the status to UNINITIALIZED
memset(&a, 0, sizeof(RRDCALC_STATUS));
if(a != RRDCALC_STATUS_UNINITIALIZED) {
fprintf(stderr, "%s is not zero.\n", rrdcalc_status2string(RRDCALC_STATUS_UNINITIALIZED));
return 1;
}
a = RRDCALC_STATUS_REMOVED;
b = RRDCALC_STATUS_UNDEFINED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_UNDEFINED;
b = RRDCALC_STATUS_UNINITIALIZED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_UNINITIALIZED;
b = RRDCALC_STATUS_CLEAR;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_CLEAR;
b = RRDCALC_STATUS_RAISED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_RAISED;
b = RRDCALC_STATUS_WARNING;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_WARNING;
b = RRDCALC_STATUS_CRITICAL;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
fprintf(stderr, "RRDCALC_STATUSes are sortable.\n");
return 0;
}
int check_storage_number(calculated_number n, int debug) {
char buffer[100];
uint32_t flags = SN_EXISTS;
storage_number s = pack_storage_number(n, flags);
calculated_number d = unpack_storage_number(s);
if(!does_storage_number_exist(s)) {
fprintf(stderr, "Exists flags missing for number " CALCULATED_NUMBER_FORMAT "!\n", n);
return 5;
}
calculated_number ddiff = d - n;
calculated_number dcdiff = ddiff * 100.0 / n;
if(dcdiff < 0) dcdiff = -dcdiff;
size_t len = (size_t)print_calculated_number(buffer, d);
calculated_number p = str2ld(buffer, NULL);
calculated_number pdiff = n - p;
calculated_number pcdiff = pdiff * 100.0 / n;
if(pcdiff < 0) pcdiff = -pcdiff;
if(debug) {
fprintf(stderr,
CALCULATED_NUMBER_FORMAT " original\n"
CALCULATED_NUMBER_FORMAT " packed and unpacked, (stored as 0x%08X, diff " CALCULATED_NUMBER_FORMAT ", " CALCULATED_NUMBER_FORMAT "%%)\n"
"%s printed after unpacked (%zu bytes)\n"
CALCULATED_NUMBER_FORMAT " re-parsed from printed (diff " CALCULATED_NUMBER_FORMAT ", " CALCULATED_NUMBER_FORMAT "%%)\n\n",
n,
d, s, ddiff, dcdiff,
buffer, len,
p, pdiff, pcdiff
);
if(len != strlen(buffer)) fprintf(stderr, "ERROR: printed number %s is reported to have length %zu but it has %zu\n", buffer, len, strlen(buffer));
if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT)
fprintf(stderr, "WARNING: packing number " CALCULATED_NUMBER_FORMAT " has accuracy loss " CALCULATED_NUMBER_FORMAT " %%\n", n, dcdiff);
if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT)
fprintf(stderr, "WARNING: re-parsing the packed, unpacked and printed number " CALCULATED_NUMBER_FORMAT " has accuracy loss " CALCULATED_NUMBER_FORMAT " %%\n", n, pcdiff);
}
if(len != strlen(buffer)) return 1;
if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 3;
if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 4;
return 0;
}
calculated_number storage_number_min(calculated_number n) {
calculated_number r = 1, last;
do {
last = n;
n /= 2.0;
storage_number t = pack_storage_number(n, SN_EXISTS);
r = unpack_storage_number(t);
} while(r != 0.0 && r != last);
return last;
}
void benchmark_storage_number(int loop, int multiplier) {
int i, j;
calculated_number n, d;
storage_number s;
unsigned long long user, system, total, mine, their;
calculated_number storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW);
calculated_number storage_number_positive_max = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW);
char buffer[100];
struct rusage now, last;
fprintf(stderr, "\n\nBenchmarking %d numbers, please wait...\n\n", loop);
// ------------------------------------------------------------------------
fprintf(stderr, "SYSTEM LONG DOUBLE SIZE: %zu bytes\n", sizeof(calculated_number));
fprintf(stderr, "NETDATA FLOATING POINT SIZE: %zu bytes\n", sizeof(storage_number));
mine = (calculated_number)sizeof(storage_number) * (calculated_number)loop;
their = (calculated_number)sizeof(calculated_number) * (calculated_number)loop;
if(mine > their) {
fprintf(stderr, "\nNETDATA NEEDS %0.2" LONG_DOUBLE_MODIFIER " TIMES MORE MEMORY. Sorry!\n", (LONG_DOUBLE)(mine / their));
}
else {
fprintf(stderr, "\nNETDATA INTERNAL FLOATING POINT ARITHMETICS NEEDS %0.2" LONG_DOUBLE_MODIFIER " TIMES LESS MEMORY.\n", (LONG_DOUBLE)(their / mine));
}
fprintf(stderr, "\nNETDATA FLOATING POINT\n");
fprintf(stderr, "MIN POSITIVE VALUE " CALCULATED_NUMBER_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW));
fprintf(stderr, "MAX POSITIVE VALUE " CALCULATED_NUMBER_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW));
fprintf(stderr, "MIN NEGATIVE VALUE " CALCULATED_NUMBER_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MIN_RAW));
fprintf(stderr, "MAX NEGATIVE VALUE " CALCULATED_NUMBER_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW));
fprintf(stderr, "Maximum accuracy loss accepted: " CALCULATED_NUMBER_FORMAT "%%\n\n\n", (calculated_number)ACCURACY_LOSS_ACCEPTED_PERCENT);
// ------------------------------------------------------------------------
fprintf(stderr, "INTERNAL LONG DOUBLE PRINTING: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
print_calculated_number(buffer, n);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
mine = total;
fprintf(stderr, "user %0.5" LONG_DOUBLE_MODIFIER", system %0.5" LONG_DOUBLE_MODIFIER ", total %0.5" LONG_DOUBLE_MODIFIER "\n", (LONG_DOUBLE)(user / 1000000.0), (LONG_DOUBLE)(system / 1000000.0), (LONG_DOUBLE)(total / 1000000.0));
// ------------------------------------------------------------------------
fprintf(stderr, "SYSTEM LONG DOUBLE PRINTING: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
snprintfz(buffer, 100, CALCULATED_NUMBER_FORMAT, n);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
their = total;
fprintf(stderr, "user %0.5" LONG_DOUBLE_MODIFIER ", system %0.5" LONG_DOUBLE_MODIFIER ", total %0.5" LONG_DOUBLE_MODIFIER "\n", (LONG_DOUBLE)(user / 1000000.0), (LONG_DOUBLE)(system / 1000000.0), (LONG_DOUBLE)(total / 1000000.0));
if(mine > total) {
fprintf(stderr, "NETDATA CODE IS SLOWER %0.2" LONG_DOUBLE_MODIFIER " %%\n", (LONG_DOUBLE)(mine * 100.0 / their - 100.0));
}
else {
fprintf(stderr, "NETDATA CODE IS F A S T E R %0.2" LONG_DOUBLE_MODIFIER " %%\n", (LONG_DOUBLE)(their * 100.0 / mine - 100.0));
}
// ------------------------------------------------------------------------
fprintf(stderr, "\nINTERNAL LONG DOUBLE PRINTING WITH PACK / UNPACK: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
s = pack_storage_number(n, SN_EXISTS);
d = unpack_storage_number(s);
print_calculated_number(buffer, d);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
mine = total;
fprintf(stderr, "user %0.5" LONG_DOUBLE_MODIFIER ", system %0.5" LONG_DOUBLE_MODIFIER ", total %0.5" LONG_DOUBLE_MODIFIER "\n", (LONG_DOUBLE)(user / 1000000.0), (LONG_DOUBLE)(system / 1000000.0), (LONG_DOUBLE)(total / 1000000.0));
if(mine > their) {
fprintf(stderr, "WITH PACKING UNPACKING NETDATA CODE IS SLOWER %0.2" LONG_DOUBLE_MODIFIER " %%\n", (LONG_DOUBLE)(mine * 100.0 / their - 100.0));
}
else {
fprintf(stderr, "EVEN WITH PACKING AND UNPACKING, NETDATA CODE IS F A S T E R %0.2" LONG_DOUBLE_MODIFIER " %%\n", (LONG_DOUBLE)(their * 100.0 / mine - 100.0));
}
// ------------------------------------------------------------------------
}
static int check_storage_number_exists() {
uint32_t flags;
for(flags = 0; flags < 7 ; flags++) {
if(get_storage_number_flags(flags << 24) != flags << 24) {
fprintf(stderr, "Flag 0x%08x is not checked correctly. It became 0x%08x\n", flags << 24, get_storage_number_flags(flags << 24));
return 1;
}
}
flags = SN_EXISTS;
calculated_number n = 0.0;
storage_number s = pack_storage_number(n, flags);
calculated_number d = unpack_storage_number(s);
if(get_storage_number_flags(s) != flags) {
fprintf(stderr, "Wrong flags. Given %08x, Got %08x!\n", flags, get_storage_number_flags(s));
return 1;
}
if(n != d) {
fprintf(stderr, "Wrong number returned. Expected " CALCULATED_NUMBER_FORMAT ", returned " CALCULATED_NUMBER_FORMAT "!\n", n, d);
return 1;
}
return 0;
}
int unit_test_storage() {
if(check_storage_number_exists()) return 0;
calculated_number storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW);
calculated_number storage_number_negative_max = unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW);
calculated_number c, a = 0;
int i, j, g, r = 0;
for(g = -1; g <= 1 ; g++) {
a = 0;
if(!g) continue;
for(j = 0; j < 9 ;j++) {
a += 0.0000001;
c = a * g;
for(i = 0; i < 21 ;i++, c *= 10) {
if(c > 0 && c < storage_number_positive_min) continue;
if(c < 0 && c > storage_number_negative_max) continue;
if(check_storage_number(c, 1)) return 1;
}
}
}
// if(check_storage_number(858993459.1234567, 1)) return 1;
benchmark_storage_number(1000000, 2);
return r;
}
int unit_test_str2ld() {
char *values[] = {
"1.2345678", "-35.6", "0.00123", "23842384234234.2", ".1", "1.2e-10",
"hello", "1wrong", "nan", "inf", NULL
};
int i;
for(i = 0; values[i] ; i++) {
char *e_mine = "hello", *e_sys = "world";
LONG_DOUBLE mine = str2ld(values[i], &e_mine);
LONG_DOUBLE sys = strtold(values[i], &e_sys);
if(isnan(mine)) {
if(!isnan(sys)) {
fprintf(stderr, "Value '%s' is parsed as %" LONG_DOUBLE_MODIFIER ", but system believes it is %" LONG_DOUBLE_MODIFIER ".\n", values[i], mine, sys);
return -1;
}
}
else if(isinf(mine)) {
if(!isinf(sys)) {
fprintf(stderr, "Value '%s' is parsed as %" LONG_DOUBLE_MODIFIER ", but system believes it is %" LONG_DOUBLE_MODIFIER ".\n", values[i], mine, sys);
return -1;
}
}
else if(mine != sys && abs(mine-sys) > 0.000001) {
fprintf(stderr, "Value '%s' is parsed as %" LONG_DOUBLE_MODIFIER ", but system believes it is %" LONG_DOUBLE_MODIFIER ", delta %" LONG_DOUBLE_MODIFIER ".\n", values[i], mine, sys, sys-mine);
return -1;
}
if(e_mine != e_sys) {
fprintf(stderr, "Value '%s' is parsed correctly, but endptr is not right\n", values[i]);
return -1;
}
fprintf(stderr, "str2ld() parsed value '%s' exactly the same way with strtold(), returned %" LONG_DOUBLE_MODIFIER " vs %" LONG_DOUBLE_MODIFIER "\n", values[i], mine, sys);
}
return 0;
}
int unit_test_buffer() {
BUFFER *wb = buffer_create(1);
char string[2048 + 1];
char final[9000 + 1];
int i;
for(i = 0; i < 2048; i++)
string[i] = (char)((i % 24) + 'a');
string[2048] = '\0';
const char *fmt = "string1: %s\nstring2: %s\nstring3: %s\nstring4: %s";
buffer_sprintf(wb, fmt, string, string, string, string);
snprintfz(final, 9000, fmt, string, string, string, string);
const char *s = buffer_tostring(wb);
if(buffer_strlen(wb) != strlen(final) || strcmp(s, final) != 0) {
fprintf(stderr, "\nbuffer_sprintf() is faulty.\n");
fprintf(stderr, "\nstring : %s (length %zu)\n", string, strlen(string));
fprintf(stderr, "\nbuffer : %s (length %zu)\n", s, buffer_strlen(wb));
fprintf(stderr, "\nexpected: %s (length %zu)\n", final, strlen(final));
buffer_free(wb);
return -1;
}
fprintf(stderr, "buffer_sprintf() works as expected.\n");
buffer_free(wb);
return 0;
}
// --------------------------------------------------------------------------------------------------------------------
struct feed_values {
unsigned long long microseconds;
collected_number value;
};
struct test {
char name[100];
char description[1024];
int update_every;
unsigned long long multiplier;
unsigned long long divisor;
RRD_ALGORITHM algorithm;
unsigned long feed_entries;
unsigned long result_entries;
struct feed_values *feed;
calculated_number *results;
collected_number *feed2;
calculated_number *results2;
};
// --------------------------------------------------------------------------------------------------------------------
// test1
// test absolute values stored
struct feed_values test1_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
calculated_number test1_results[] = {
20, 30, 40, 50, 60, 70, 80, 90, 100
};
struct test test1 = {
"test1", // name
"test absolute values stored at exactly second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
10, // feed entries
9, // result entries
test1_feed, // feed
test1_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test2
// test absolute values stored in the middle of second boundaries
struct feed_values test2_feed[] = {
{ 500000, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
calculated_number test2_results[] = {
20, 30, 40, 50, 60, 70, 80, 90, 100
};
struct test test2 = {
"test2", // name
"test absolute values stored in the middle of second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
10, // feed entries
9, // result entries
test2_feed, // feed
test2_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test3
struct feed_values test3_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
calculated_number test3_results[] = {
10, 10, 10, 10, 10, 10, 10, 10, 10
};
struct test test3 = {
"test3", // name
"test incremental values stored at exactly second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test3_feed, // feed
test3_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test4
struct feed_values test4_feed[] = {
{ 500000, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
calculated_number test4_results[] = {
10, 10, 10, 10, 10, 10, 10, 10, 10
};
struct test test4 = {
"test4", // name
"test incremental values stored in the middle of second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test4_feed, // feed
test4_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5 - 32 bit overflows
struct feed_values test5_feed[] = {
{ 0, 0x00000000FFFFFFFFULL / 3 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 1 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 2 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 1 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 2 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 1 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 2 },
{ 1000000, 0x00000000FFFFFFFFULL / 3 * 0 },
};
calculated_number test5_results[] = {
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
0x00000000FFFFFFFFULL / 3,
};
struct test test5 = {
"test5", // name
"test 32-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5_feed, // feed
test5_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5b - 16 bit overflows
struct feed_values test5b_feed[] = {
{ 0, 0x000000000000FFFFULL / 3 * 0 },
{ 1000000, 0x000000000000FFFFULL / 3 * 1 },
{ 1000000, 0x000000000000FFFFULL / 3 * 2 },
{ 1000000, 0x000000000000FFFFULL / 3 * 0 },
{ 1000000, 0x000000000000FFFFULL / 3 * 1 },
{ 1000000, 0x000000000000FFFFULL / 3 * 2 },
{ 1000000, 0x000000000000FFFFULL / 3 * 0 },
{ 1000000, 0x000000000000FFFFULL / 3 * 1 },
{ 1000000, 0x000000000000FFFFULL / 3 * 2 },
{ 1000000, 0x000000000000FFFFULL / 3 * 0 },
};
calculated_number test5b_results[] = {
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
0x000000000000FFFFULL / 3,
};
struct test test5b = {
"test5b", // name
"test 16-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5b_feed, // feed
test5b_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5c - 8 bit overflows
struct feed_values test5c_feed[] = {
{ 0, 0x00000000000000FFULL / 3 * 0 },
{ 1000000, 0x00000000000000FFULL / 3 * 1 },
{ 1000000, 0x00000000000000FFULL / 3 * 2 },
{ 1000000, 0x00000000000000FFULL / 3 * 0 },
{ 1000000, 0x00000000000000FFULL / 3 * 1 },
{ 1000000, 0x00000000000000FFULL / 3 * 2 },
{ 1000000, 0x00000000000000FFULL / 3 * 0 },
{ 1000000, 0x00000000000000FFULL / 3 * 1 },
{ 1000000, 0x00000000000000FFULL / 3 * 2 },
{ 1000000, 0x00000000000000FFULL / 3 * 0 },
};
calculated_number test5c_results[] = {
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
0x00000000000000FFULL / 3,
};
struct test test5c = {
"test5c", // name
"test 8-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5c_feed, // feed
test5c_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5d - 64 bit overflows
struct feed_values test5d_feed[] = {
{ 0, 0xFFFFFFFFFFFFFFFFULL / 3 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 1 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 2 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 1 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 2 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 1 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 2 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 3 * 0 },
};
calculated_number test5d_results[] = {
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
0xFFFFFFFFFFFFFFFFULL / 3,
};
struct test test5d = {
"test5d", // name
"test 64-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5d_feed, // feed
test5d_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test6
struct feed_values test6_feed[] = {
{ 250000, 1000 },
{ 250000, 2000 },
{ 250000, 3000 },
{ 250000, 4000 },
{ 250000, 5000 },
{ 250000, 6000 },
{ 250000, 7000 },
{ 250000, 8000 },
{ 250000, 9000 },
{ 250000, 10000 },
{ 250000, 11000 },
{ 250000, 12000 },
{ 250000, 13000 },
{ 250000, 14000 },
{ 250000, 15000 },
{ 250000, 16000 },
};
calculated_number test6_results[] = {
4000, 4000, 4000, 4000
};
struct test test6 = {
"test6", // name
"test incremental values updated within the same second",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
16, // feed entries
4, // result entries
test6_feed, // feed
test6_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test7
struct feed_values test7_feed[] = {
{ 500000, 1000 },
{ 2000000, 2000 },
{ 2000000, 3000 },
{ 2000000, 4000 },
{ 2000000, 5000 },
{ 2000000, 6000 },
{ 2000000, 7000 },
{ 2000000, 8000 },
{ 2000000, 9000 },
{ 2000000, 10000 },
};
calculated_number test7_results[] = {
500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500
};
struct test test7 = {
"test7", // name
"test incremental values updated in long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
18, // result entries
test7_feed, // feed
test7_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test8
struct feed_values test8_feed[] = {
{ 500000, 1000 },
{ 2000000, 2000 },
{ 2000000, 3000 },
{ 2000000, 4000 },
{ 2000000, 5000 },
{ 2000000, 6000 },
};
calculated_number test8_results[] = {
1250, 2000, 2250, 3000, 3250, 4000, 4250, 5000, 5250, 6000
};
struct test test8 = {
"test8", // name
"test absolute values updated in long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
6, // feed entries
10, // result entries
test8_feed, // feed
test8_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test9
struct feed_values test9_feed[] = {
{ 250000, 1000 },
{ 250000, 2000 },
{ 250000, 3000 },
{ 250000, 4000 },
{ 250000, 5000 },
{ 250000, 6000 },
{ 250000, 7000 },
{ 250000, 8000 },
{ 250000, 9000 },
{ 250000, 10000 },
{ 250000, 11000 },
{ 250000, 12000 },
{ 250000, 13000 },
{ 250000, 14000 },
{ 250000, 15000 },
{ 250000, 16000 },
};
calculated_number test9_results[] = {
4000, 8000, 12000, 16000
};
struct test test9 = {
"test9", // name
"test absolute values updated within the same second",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
16, // feed entries
4, // result entries
test9_feed, // feed
test9_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test10
struct feed_values test10_feed[] = {
{ 500000, 1000 },
{ 600000, 1000 + 600 },
{ 200000, 1600 + 200 },
{ 1000000, 1800 + 1000 },
{ 200000, 2800 + 200 },
{ 2000000, 3000 + 2000 },
{ 600000, 5000 + 600 },
{ 400000, 5600 + 400 },
{ 900000, 6000 + 900 },
{ 1000000, 6900 + 1000 },
};
calculated_number test10_results[] = {
1000, 1000, 1000, 1000, 1000, 1000, 1000
};
struct test test10 = {
"test10", // name
"test incremental values updated in short and long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
7, // result entries
test10_feed, // feed
test10_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test11
struct feed_values test11_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
collected_number test11_feed2[] = {
10, 20, 30, 40, 50, 60, 70, 80, 90, 100
};
calculated_number test11_results[] = {
50, 50, 50, 50, 50, 50, 50, 50, 50
};
calculated_number test11_results2[] = {
50, 50, 50, 50, 50, 50, 50, 50, 50
};
struct test test11 = {
"test11", // name
"test percentage-of-incremental-row with equal values",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
9, // result entries
test11_feed, // feed
test11_results, // results
test11_feed2, // feed2
test11_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test12
struct feed_values test12_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
collected_number test12_feed2[] = {
10*3, 20*3, 30*3, 40*3, 50*3, 60*3, 70*3, 80*3, 90*3, 100*3
};
calculated_number test12_results[] = {
25, 25, 25, 25, 25, 25, 25, 25, 25
};
calculated_number test12_results2[] = {
75, 75, 75, 75, 75, 75, 75, 75, 75
};
struct test test12 = {
"test12", // name
"test percentage-of-incremental-row with equal values",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
9, // result entries
test12_feed, // feed
test12_results, // results
test12_feed2, // feed2
test12_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test13
struct feed_values test13_feed[] = {
{ 500000, 1000 },
{ 600000, 1000 + 600 },
{ 200000, 1600 + 200 },
{ 1000000, 1800 + 1000 },
{ 200000, 2800 + 200 },
{ 2000000, 3000 + 2000 },
{ 600000, 5000 + 600 },
{ 400000, 5600 + 400 },
{ 900000, 6000 + 900 },
{ 1000000, 6900 + 1000 },
};
calculated_number test13_results[] = {
83.3333300, 100, 100, 100, 100, 100, 100
};
struct test test13 = {
"test13", // name
"test incremental values updated in short and long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
7, // result entries
test13_feed, // feed
test13_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test14
struct feed_values test14_feed[] = {
{ 0, 0x015397dc42151c41ULL },
{ 13573000, 0x015397e612e3ff5dULL },
{ 29969000, 0x015397f905ecdaa8ULL },
{ 29958000, 0x0153980c2a6cb5e4ULL },
{ 30054000, 0x0153981f4032fb83ULL },
{ 34952000, 0x015398355efadaccULL },
{ 25046000, 0x01539845ba4b09f8ULL },
{ 29947000, 0x0153985948bf381dULL },
{ 30054000, 0x0153986c5b9c27e2ULL },
{ 29942000, 0x0153987f888982d0ULL },
};
calculated_number test14_results[] = {
23.1383300, 21.8515600, 21.8804600, 21.7788000, 22.0112200, 22.4386100, 22.0906100, 21.9150800
};
struct test test14 = {
"test14", // name
"issue #981 with real data",
30, // update_every
8, // multiplier
1000000000, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
8, // result entries
test14_feed, // feed
test14_results, // results
NULL, // feed2
NULL // results2
};
struct feed_values test14b_feed[] = {
{ 0, 0 },
{ 13573000, 13573000 },
{ 29969000, 13573000 + 29969000 },
{ 29958000, 13573000 + 29969000 + 29958000 },
{ 30054000, 13573000 + 29969000 + 29958000 + 30054000 },
{ 34952000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 },
{ 25046000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 },
{ 29947000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 },
{ 30054000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 },
{ 29942000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 + 29942000 },
};
calculated_number test14b_results[] = {
1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000
};
struct test test14b = {
"test14b", // name
"issue #981 with dummy data",
30, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
8, // result entries
test14b_feed, // feed
test14b_results, // results
NULL, // feed2
NULL // results2
};
struct feed_values test14c_feed[] = {
{ 29000000, 29000000 },
{ 1000000, 29000000 + 1000000 },
{ 30000000, 29000000 + 1000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
};
calculated_number test14c_results[] = {
1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000
};
struct test test14c = {
"test14c", // name
"issue #981 with dummy data, checking for late start",
30, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test14c_feed, // feed
test14c_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test15
struct feed_values test15_feed[] = {
{ 0, 1068066388 },
{ 1008752, 1068822698 },
{ 993809, 1069573072 },
{ 995911, 1070324135 },
{ 1014562, 1071078166 },
{ 994684, 1071831349 },
{ 993128, 1072235739 },
{ 1010332, 1072958871 },
{ 1003394, 1073707019 },
{ 995201, 1074460255 },
};
collected_number test15_feed2[] = {
178825286, 178825286, 178825286, 178825286, 178825498, 178825498, 179165652, 179202964, 179203282, 179204130
};
calculated_number test15_results[] = {
5857.4080000, 5898.4540000, 5891.6590000, 5806.3160000, 5914.2640000, 3202.2630000, 5589.6560000, 5822.5260000, 5911.7520000
};
calculated_number test15_results2[] = {
0.0000000, 0.0000000, 0.0024944, 1.6324779, 0.0212777, 2655.1890000, 290.5387000, 5.6733610, 6.5960220
};
struct test test15 = {
"test15", // name
"test incremental with 2 dimensions",
1, // update_every
8, // multiplier
1024, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test15_feed, // feed
test15_results, // results
test15_feed2, // feed2
test15_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
int run_test(struct test *test)
{
fprintf(stderr, "\nRunning test '%s':\n%s\n", test->name, test->description);
default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC;
default_rrd_update_every = test->update_every;
char name[101];
snprintfz(name, 100, "unittest-%s", test->name);
// create the chart
RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1
, test->update_every, RRDSET_TYPE_LINE);
RRDDIM *rd = rrddim_add(st, "dim1", NULL, test->multiplier, test->divisor, test->algorithm);
RRDDIM *rd2 = NULL;
if(test->feed2)
rd2 = rrddim_add(st, "dim2", NULL, test->multiplier, test->divisor, test->algorithm);
rrdset_flag_set(st, RRDSET_FLAG_DEBUG);
// feed it with the test data
time_t time_now = 0, time_start = now_realtime_sec();
unsigned long c;
collected_number last = 0;
for(c = 0; c < test->feed_entries; c++) {
if(debug_flags) fprintf(stderr, "\n\n");
if(c) {
time_now += test->feed[c].microseconds;
fprintf(stderr, " > %s: feeding position %lu, after %0.3f seconds (%0.3f seconds from start), delta " CALCULATED_NUMBER_FORMAT ", rate " CALCULATED_NUMBER_FORMAT "\n",
test->name, c+1,
(float)test->feed[c].microseconds / 1000000.0,
(float)time_now / 1000000.0,
((calculated_number)test->feed[c].value - (calculated_number)last) * (calculated_number)test->multiplier / (calculated_number)test->divisor,
(((calculated_number)test->feed[c].value - (calculated_number)last) * (calculated_number)test->multiplier / (calculated_number)test->divisor) / (calculated_number)test->feed[c].microseconds * (calculated_number)1000000);
// rrdset_next_usec_unfiltered(st, test->feed[c].microseconds);
st->usec_since_last_update = test->feed[c].microseconds;
}
else {
fprintf(stderr, " > %s: feeding position %lu\n", test->name, c+1);
}
fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rd->name, test->feed[c].value);
rrddim_set(st, "dim1", test->feed[c].value);
last = test->feed[c].value;
if(rd2) {
fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rd2->name, test->feed2[c]);
rrddim_set(st, "dim2", test->feed2[c]);
}
rrdset_done(st);
// align the first entry to second boundary
if(!c) {
fprintf(stderr, " > %s: fixing first collection time to be %llu microseconds to second boundary\n", test->name, test->feed[c].microseconds);
rd->last_collected_time.tv_usec = st->last_collected_time.tv_usec = st->last_updated.tv_usec = test->feed[c].microseconds;
// time_start = st->last_collected_time.tv_sec;
}
}
// check the result
int errors = 0;
if(st->counter != test->result_entries) {
fprintf(stderr, " %s stored %zu entries, but we were expecting %lu, ### E R R O R ###\n", test->name, st->counter, test->result_entries);
errors++;
}
unsigned long max = (st->counter < test->result_entries)?st->counter:test->result_entries;
for(c = 0 ; c < max ; c++) {
calculated_number v = unpack_storage_number(rd->values[c]);
calculated_number n = unpack_storage_number(pack_storage_number(test->results[c], SN_EXISTS));
int same = (calculated_number_round(v * 10000000.0) == calculated_number_round(n * 10000000.0))?1:0;
fprintf(stderr, " %s/%s: checking position %lu (at %lu secs), expecting value " CALCULATED_NUMBER_FORMAT ", found " CALCULATED_NUMBER_FORMAT ", %s\n",
test->name, rd->name, c+1,
(rrdset_first_entry_t(st) + c * st->update_every) - time_start,
n, v, (same)?"OK":"### E R R O R ###");
if(!same) errors++;
if(rd2) {
v = unpack_storage_number(rd2->values[c]);
n = test->results2[c];
same = (calculated_number_round(v * 10000000.0) == calculated_number_round(n * 10000000.0))?1:0;
fprintf(stderr, " %s/%s: checking position %lu (at %lu secs), expecting value " CALCULATED_NUMBER_FORMAT ", found " CALCULATED_NUMBER_FORMAT ", %s\n",
test->name, rd2->name, c+1,
(rrdset_first_entry_t(st) + c * st->update_every) - time_start,
n, v, (same)?"OK":"### E R R O R ###");
if(!same) errors++;
}
}
return errors;
}
static int test_variable_renames(void) {
fprintf(stderr, "Creating chart\n");
RRDSET *st = rrdset_create_localhost("chart", "ID", NULL, "family", "context", "Unit Testing", "a value", "unittest", NULL, 1, 1, RRDSET_TYPE_LINE);
fprintf(stderr, "Created chart with id '%s', name '%s'\n", st->id, st->name);
fprintf(stderr, "Creating dimension DIM1\n");
RRDDIM *rd1 = rrddim_add(st, "DIM1", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rd1->id, rd1->name);
fprintf(stderr, "Creating dimension DIM2\n");
RRDDIM *rd2 = rrddim_add(st, "DIM2", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rd2->id, rd2->name);
fprintf(stderr, "Renaming chart to CHARTNAME1\n");
rrdset_set_name(st, "CHARTNAME1");
fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", st->id, st->name);
fprintf(stderr, "Renaming chart to CHARTNAME2\n");
rrdset_set_name(st, "CHARTNAME2");
fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", st->id, st->name);
fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME1\n");
rrddim_set_name(st, rd1, "DIM1NAME1");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rd1->id, rd1->name);
fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME2\n");
rrddim_set_name(st, rd1, "DIM1NAME2");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rd1->id, rd1->name);
fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME1\n");
rrddim_set_name(st, rd2, "DIM2NAME1");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rd2->id, rd2->name);
fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME2\n");
rrddim_set_name(st, rd2, "DIM2NAME2");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rd2->id, rd2->name);
BUFFER *buf = buffer_create(1);
health_api_v1_chart_variables2json(st, buf);
fprintf(stderr, "%s", buffer_tostring(buf));
buffer_free(buf);
return 1;
}
int check_strdupz_path_subpath() {
struct strdupz_path_subpath_checks {
const char *path;
const char *subpath;
const char *result;
} checks[] = {
{ "", "", "." },
{ "/", "", "/" },
{ "/etc/netdata", "", "/etc/netdata" },
{ "/etc/netdata///", "", "/etc/netdata" },
{ "/etc/netdata///", "health.d", "/etc/netdata/health.d" },
{ "/etc/netdata///", "///health.d", "/etc/netdata/health.d" },
{ "/etc/netdata", "///health.d", "/etc/netdata/health.d" },
{ "", "///health.d", "./health.d" },
{ "/", "///health.d", "/health.d" },
// terminator
{ NULL, NULL, NULL }
};
size_t i;
for(i = 0; checks[i].result ; i++) {
char *s = strdupz_path_subpath(checks[i].path, checks[i].subpath);
fprintf(stderr, "strdupz_path_subpath(\"%s\", \"%s\") = \"%s\": ", checks[i].path, checks[i].subpath, s);
if(!s || strcmp(s, checks[i].result) != 0) {
freez(s);
fprintf(stderr, "FAILED\n");
return 1;
}
else {
freez(s);
fprintf(stderr, "OK\n");
}
}
return 0;
}
int run_all_mockup_tests(void)
{
if(check_strdupz_path_subpath())
return 1;
if(check_number_printing())
return 1;
if(check_rrdcalc_comparisons())
return 1;
if(!test_variable_renames())
return 1;
if(run_test(&test1))
return 1;
if(run_test(&test2))
return 1;
if(run_test(&test3))
return 1;
if(run_test(&test4))
return 1;
if(run_test(&test5))
return 1;
if(run_test(&test5b))
return 1;
if(run_test(&test5c))
return 1;
if(run_test(&test5d))
return 1;
if(run_test(&test6))
return 1;
if(run_test(&test7))
return 1;
if(run_test(&test8))
return 1;
if(run_test(&test9))
return 1;
if(run_test(&test10))
return 1;
if(run_test(&test11))
return 1;
if(run_test(&test12))
return 1;
if(run_test(&test13))
return 1;
if(run_test(&test14))
return 1;
if(run_test(&test14b))
return 1;
if(run_test(&test14c))
return 1;
if(run_test(&test15))
return 1;
return 0;
}
int unit_test(long delay, long shift)
{
static int repeat = 0;
repeat++;
char name[101];
snprintfz(name, 100, "unittest-%d-%ld-%ld", repeat, delay, shift);
//debug_flags = 0xffffffff;
default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC;
default_rrd_update_every = 1;
int do_abs = 1;
int do_inc = 1;
int do_abst = 0;
int do_absi = 0;
RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1, 1
, RRDSET_TYPE_LINE);
rrdset_flag_set(st, RRDSET_FLAG_DEBUG);
RRDDIM *rdabs = NULL;
RRDDIM *rdinc = NULL;
RRDDIM *rdabst = NULL;
RRDDIM *rdabsi = NULL;
if(do_abs) rdabs = rrddim_add(st, "absolute", "absolute", 1, 1, RRD_ALGORITHM_ABSOLUTE);
if(do_inc) rdinc = rrddim_add(st, "incremental", "incremental", 1, 1, RRD_ALGORITHM_INCREMENTAL);
if(do_abst) rdabst = rrddim_add(st, "percentage-of-absolute-row", "percentage-of-absolute-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_ROW_TOTAL);
if(do_absi) rdabsi = rrddim_add(st, "percentage-of-incremental-row", "percentage-of-incremental-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
long increment = 1000;
collected_number i = 0;
unsigned long c, dimensions = 0;
RRDDIM *rd;
for(rd = st->dimensions ; rd ; rd = rd->next) dimensions++;
for(c = 0; c < 20 ;c++) {
i += increment;
fprintf(stderr, "\n\nLOOP = %lu, DELAY = %ld, VALUE = " COLLECTED_NUMBER_FORMAT "\n", c, delay, i);
if(c) {
// rrdset_next_usec_unfiltered(st, delay);
st->usec_since_last_update = delay;
}
if(do_abs) rrddim_set(st, "absolute", i);
if(do_inc) rrddim_set(st, "incremental", i);
if(do_abst) rrddim_set(st, "percentage-of-absolute-row", i);
if(do_absi) rrddim_set(st, "percentage-of-incremental-row", i);
if(!c) {
now_realtime_timeval(&st->last_collected_time);
st->last_collected_time.tv_usec = shift;
}
// prevent it from deleting the dimensions
for(rd = st->dimensions ; rd ; rd = rd->next)
rd->last_collected_time.tv_sec = st->last_collected_time.tv_sec;
rrdset_done(st);
}
unsigned long oincrement = increment;
increment = increment * st->update_every * 1000000 / delay;
fprintf(stderr, "\n\nORIGINAL INCREMENT: %lu, INCREMENT %ld, DELAY %ld, SHIFT %ld\n", oincrement * 10, increment * 10, delay, shift);
int ret = 0;
storage_number sn;
calculated_number cn, v;
for(c = 0 ; c < st->counter ; c++) {
fprintf(stderr, "\nPOSITION: c = %lu, EXPECTED VALUE %lu\n", c, (oincrement + c * increment + increment * (1000000 - shift) / 1000000 )* 10);
for(rd = st->dimensions ; rd ; rd = rd->next) {
sn = rd->values[c];
cn = unpack_storage_number(sn);
fprintf(stderr, "\t %s " CALCULATED_NUMBER_FORMAT " (PACKED AS " STORAGE_NUMBER_FORMAT ") -> ", rd->id, cn, sn);
if(rd == rdabs) v =
( oincrement
// + (increment * (1000000 - shift) / 1000000)
+ (c + 1) * increment
);
else if(rd == rdinc) v = (c?(increment):(increment * (1000000 - shift) / 1000000));
else if(rd == rdabst) v = oincrement / dimensions / 10;
else if(rd == rdabsi) v = oincrement / dimensions / 10;
else v = 0;
if(v == cn) fprintf(stderr, "passed.\n");
else {
fprintf(stderr, "ERROR! (expected " CALCULATED_NUMBER_FORMAT ")\n", v);
ret = 1;
}
}
}
if(ret)
fprintf(stderr, "\n\nUNIT TEST(%ld, %ld) FAILED\n\n", delay, shift);
return ret;
}
#ifdef ENABLE_DBENGINE
static inline void rrddim_set_by_pointer_fake_time(RRDDIM *rd, collected_number value, time_t now)
{
rd->last_collected_time.tv_sec = now;
rd->last_collected_time.tv_usec = 0;
rd->collected_value = value;
rd->updated = 1;
rd->collections_counter++;
collected_number v = (value >= 0) ? value : -value;
if(unlikely(v > rd->collected_value_max)) rd->collected_value_max = v;
}
int test_dbengine(void)
{
const int CHARTS = 128;
const int DIMS = 16; /* That gives us 2048 metrics */
const int POINTS = 16384; /* This produces 128MiB of metric data */
const int QUERY_BATCH = 4096;
uint8_t same;
int i, j, k, c, errors;
RRDHOST *host = NULL;
RRDSET *st[CHARTS];
RRDDIM *rd[CHARTS][DIMS];
char name[101];
time_t time_now;
collected_number last;
struct rrddim_query_handle handle;
calculated_number value, expected;
storage_number n;
error_log_limit_unlimited();
fprintf(stderr, "\nRunning DB-engine test\n");
default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE;
debug(D_RRDHOST, "Initializing localhost with hostname 'unittest-dbengine'");
host = rrdhost_find_or_create(
"unittest-dbengine"
, "unittest-dbengine"
, "unittest-dbengine"
, os_type
, netdata_configured_timezone
, config_get(CONFIG_SECTION_BACKEND, "host tags", "")
, program_name
, program_version
, default_rrd_update_every
, default_rrd_history_entries
, RRD_MEMORY_MODE_DBENGINE
, default_health_enabled
, default_rrdpush_enabled
, default_rrdpush_destination
, default_rrdpush_api_key
, default_rrdpush_send_charts_matching
, NULL
);
if (NULL == host)
return 1;
for (i = 0 ; i < CHARTS ; ++i) {
snprintfz(name, 100, "dbengine-chart-%d", i);
// create the chart
st[i] = rrdset_create(host, "netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest",
NULL, 1, 1, RRDSET_TYPE_LINE);
rrdset_flag_set(st[i], RRDSET_FLAG_DEBUG);
rrdset_flag_set(st[i], RRDSET_FLAG_STORE_FIRST);
for (j = 0 ; j < DIMS ; ++j) {
snprintfz(name, 100, "dim-%d", j);
rd[i][j] = rrddim_add(st[i], name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
}
}
// feed it with the test data
time_now = 1;
last = 0;
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0 ; j < DIMS ; ++j) {
rd[i][j]->last_collected_time.tv_sec =
st[i]->last_collected_time.tv_sec = st[i]->last_updated.tv_sec = time_now;
rd[i][j]->last_collected_time.tv_usec =
st[i]->last_collected_time.tv_usec = st[i]->last_updated.tv_usec = 0;
}
}
for(c = 0; c < POINTS ; ++c) {
++time_now; // time_now = c + 2
for (i = 0 ; i < CHARTS ; ++i) {
st[i]->usec_since_last_update = USEC_PER_SEC;
for (j = 0; j < DIMS; ++j) {
last = i * DIMS * POINTS + j * POINTS + c;
rrddim_set_by_pointer_fake_time(rd[i][j], last, time_now);
}
rrdset_done(st[i]);
}
}
// check the result
errors = 0;
for(c = 0; c < POINTS ; c += QUERY_BATCH) {
time_now = c + 2;
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0; j < DIMS; ++j) {
rd[i][j]->state->query_ops.init(rd[i][j], &handle, time_now, time_now + QUERY_BATCH);
for (k = 0; k < QUERY_BATCH; ++k) {
last = i * DIMS * POINTS + j * POINTS + c + k;
expected = unpack_storage_number(pack_storage_number((calculated_number)last, SN_EXISTS));
n = rd[i][j]->state->query_ops.next_metric(&handle);
value = unpack_storage_number(n);
same = (calculated_number_round(value * 10000000.0) == calculated_number_round(expected * 10000000.0)) ? 1 : 0;
if(!same) {
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value "
CALCULATED_NUMBER_FORMAT ", found " CALCULATED_NUMBER_FORMAT ", ### E R R O R ###\n",
st[i]->name, rd[i][j]->name, (unsigned long)time_now + k, expected, value);
errors++;
}
}
rd[i][j]->state->query_ops.finalize(&handle);
}
}
}
rrdeng_exit(host->rrdeng_ctx);
rrd_wrlock();
rrdhost_delete_charts(host);
rrd_unlock();
return errors;
}
void generate_dbengine_dataset(unsigned history_seconds)
{
const int DIMS = 128;
const uint64_t EXPECTED_COMPRESSION_RATIO = 94;
int j;
RRDHOST *host = NULL;
RRDSET *st;
RRDDIM *rd[DIMS];
char name[101];
time_t time_current, time_present;
default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE;
default_rrdeng_page_cache_mb = 128;
/* Worst case for uncompressible data */
default_rrdeng_disk_quota_mb = (((uint64_t)DIMS) * sizeof(storage_number) * history_seconds) / (1024 * 1024);
default_rrdeng_disk_quota_mb -= default_rrdeng_disk_quota_mb * EXPECTED_COMPRESSION_RATIO / 100;
error_log_limit_unlimited();
debug(D_RRDHOST, "Initializing localhost with hostname 'dbengine-dataset'");
host = rrdhost_find_or_create(
"dbengine-dataset"
, "dbengine-dataset"
, "dbengine-dataset"
, os_type
, netdata_configured_timezone
, config_get(CONFIG_SECTION_BACKEND, "host tags", "")
, program_name
, program_version
, default_rrd_update_every
, default_rrd_history_entries
, RRD_MEMORY_MODE_DBENGINE
, default_health_enabled
, default_rrdpush_enabled
, default_rrdpush_destination
, default_rrdpush_api_key
, default_rrdpush_send_charts_matching
, NULL
);
if (NULL == host)
return;
fprintf(stderr, "\nRunning DB-engine workload generator\n");
// create the chart
st = rrdset_create(host, "example", "random", "random", "example", NULL, "random", "random", "random",
NULL, 1, 1, RRDSET_TYPE_LINE);
for (j = 0 ; j < DIMS ; ++j) {
snprintfz(name, 100, "random%d", j);
rd[j] = rrddim_add(st, name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
}
time_present = now_realtime_sec();
// feed it with the test data
time_current = time_present - history_seconds;
for (j = 0 ; j < DIMS ; ++j) {
rd[j]->last_collected_time.tv_sec =
st->last_collected_time.tv_sec = st->last_updated.tv_sec = time_current;
rd[j]->last_collected_time.tv_usec =
st->last_collected_time.tv_usec = st->last_updated.tv_usec = 0;
}
for( ; time_current < time_present; ++time_current) {
st->usec_since_last_update = USEC_PER_SEC;
for (j = 0; j < DIMS; ++j) {
rrddim_set_by_pointer_fake_time(rd[j], (time_current + j) % 128, time_current);
}
rrdset_done(st);
}
rrd_wrlock();
rrdhost_free(host);
rrd_unlock();
}
#endif