0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-30 23:50:04 +00:00
netdata_netdata/streaming/compression.c
2023-10-28 18:20:47 +03:00

707 lines
24 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "compression.h"
#include "compression_gzip.h"
#ifdef ENABLE_LZ4
#include "compression_lz4.h"
#endif
#ifdef ENABLE_ZSTD
#include "compression_zstd.h"
#endif
#ifdef ENABLE_BROTLI
#include "compression_brotli.h"
#endif
int rrdpush_compression_levels[COMPRESSION_ALGORITHM_MAX] = {
[COMPRESSION_ALGORITHM_NONE] = 0,
[COMPRESSION_ALGORITHM_ZSTD] = 3, // 1 (faster) - 22 (smaller)
[COMPRESSION_ALGORITHM_LZ4] = 1, // 1 (smaller) - 9 (faster)
[COMPRESSION_ALGORITHM_BROTLI] = 3, // 0 (faster) - 11 (smaller)
[COMPRESSION_ALGORITHM_GZIP] = 1, // 1 (faster) - 9 (smaller)
};
void rrdpush_parse_compression_order(struct receiver_state *rpt, const char *order) {
// empty all slots
for(size_t i = 0; i < COMPRESSION_ALGORITHM_MAX ;i++)
rpt->config.compression_priorities[i] = STREAM_CAP_NONE;
char *s = strdupz(order);
char *words[COMPRESSION_ALGORITHM_MAX + 100] = { NULL };
size_t num_words = quoted_strings_splitter_pluginsd(s, words, COMPRESSION_ALGORITHM_MAX + 100);
size_t slot = 0;
STREAM_CAPABILITIES added = STREAM_CAP_NONE;
for(size_t i = 0; i < num_words && slot < COMPRESSION_ALGORITHM_MAX ;i++) {
if((STREAM_CAP_ZSTD_AVAILABLE) && strcasecmp(words[i], "zstd") == 0 && !(added & STREAM_CAP_ZSTD)) {
rpt->config.compression_priorities[slot++] = STREAM_CAP_ZSTD;
added |= STREAM_CAP_ZSTD;
}
else if((STREAM_CAP_LZ4_AVAILABLE) && strcasecmp(words[i], "lz4") == 0 && !(added & STREAM_CAP_LZ4)) {
rpt->config.compression_priorities[slot++] = STREAM_CAP_LZ4;
added |= STREAM_CAP_LZ4;
}
else if((STREAM_CAP_BROTLI_AVAILABLE) && strcasecmp(words[i], "brotli") == 0 && !(added & STREAM_CAP_BROTLI)) {
rpt->config.compression_priorities[slot++] = STREAM_CAP_BROTLI;
added |= STREAM_CAP_BROTLI;
}
else if(strcasecmp(words[i], "gzip") == 0 && !(added & STREAM_CAP_GZIP)) {
rpt->config.compression_priorities[slot++] = STREAM_CAP_GZIP;
added |= STREAM_CAP_GZIP;
}
}
freez(s);
// make sure all participate
if((STREAM_CAP_ZSTD_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_ZSTD))
rpt->config.compression_priorities[slot++] = STREAM_CAP_ZSTD;
if((STREAM_CAP_LZ4_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_LZ4))
rpt->config.compression_priorities[slot++] = STREAM_CAP_LZ4;
if((STREAM_CAP_BROTLI_AVAILABLE) && slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_BROTLI))
rpt->config.compression_priorities[slot++] = STREAM_CAP_BROTLI;
if(slot < COMPRESSION_ALGORITHM_MAX && !(added & STREAM_CAP_GZIP))
rpt->config.compression_priorities[slot++] = STREAM_CAP_GZIP;
}
void rrdpush_select_receiver_compression_algorithm(struct receiver_state *rpt) {
if (!rpt->config.rrdpush_compression)
rpt->capabilities &= ~STREAM_CAP_COMPRESSIONS_AVAILABLE;
// select the right compression before sending our capabilities to the child
if(stream_has_more_than_one_capability_of(rpt->capabilities, STREAM_CAP_COMPRESSIONS_AVAILABLE)) {
STREAM_CAPABILITIES compressions = rpt->capabilities & STREAM_CAP_COMPRESSIONS_AVAILABLE;
for(int i = 0; i < COMPRESSION_ALGORITHM_MAX; i++) {
STREAM_CAPABILITIES c = rpt->config.compression_priorities[i];
if(!(c & STREAM_CAP_COMPRESSIONS_AVAILABLE))
continue;
if(compressions & c) {
STREAM_CAPABILITIES exclude = compressions;
exclude &= ~c;
rpt->capabilities &= ~exclude;
break;
}
}
}
}
bool rrdpush_compression_initialize(struct sender_state *s) {
rrdpush_compressor_destroy(&s->compressor);
// IMPORTANT
// KEEP THE SAME ORDER IN DECOMPRESSION
if(stream_has_capability(s, STREAM_CAP_ZSTD))
s->compressor.algorithm = COMPRESSION_ALGORITHM_ZSTD;
else if(stream_has_capability(s, STREAM_CAP_LZ4))
s->compressor.algorithm = COMPRESSION_ALGORITHM_LZ4;
else if(stream_has_capability(s, STREAM_CAP_BROTLI))
s->compressor.algorithm = COMPRESSION_ALGORITHM_BROTLI;
else if(stream_has_capability(s, STREAM_CAP_GZIP))
s->compressor.algorithm = COMPRESSION_ALGORITHM_GZIP;
else
s->compressor.algorithm = COMPRESSION_ALGORITHM_NONE;
if(s->compressor.algorithm != COMPRESSION_ALGORITHM_NONE) {
s->compressor.level = rrdpush_compression_levels[s->compressor.algorithm];
rrdpush_compressor_init(&s->compressor);
return true;
}
return false;
}
bool rrdpush_decompression_initialize(struct receiver_state *rpt) {
rrdpush_decompressor_destroy(&rpt->decompressor);
// IMPORTANT
// KEEP THE SAME ORDER IN COMPRESSION
if(stream_has_capability(rpt, STREAM_CAP_ZSTD))
rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_ZSTD;
else if(stream_has_capability(rpt, STREAM_CAP_LZ4))
rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_LZ4;
else if(stream_has_capability(rpt, STREAM_CAP_BROTLI))
rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_BROTLI;
else if(stream_has_capability(rpt, STREAM_CAP_GZIP))
rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_GZIP;
else
rpt->decompressor.algorithm = COMPRESSION_ALGORITHM_NONE;
if(rpt->decompressor.algorithm != COMPRESSION_ALGORITHM_NONE) {
rrdpush_decompressor_init(&rpt->decompressor);
return true;
}
return false;
}
/*
* In case of stream compression buffer overflow
* Inform the user through the error log file and
* deactivate compression by downgrading the stream protocol.
*/
void rrdpush_compression_deactivate(struct sender_state *s) {
switch(s->compressor.algorithm) {
case COMPRESSION_ALGORITHM_MAX:
case COMPRESSION_ALGORITHM_NONE:
netdata_log_error("STREAM_COMPRESSION: compression error on 'host:%s' without any compression enabled. Ignoring error.",
rrdhost_hostname(s->host));
break;
case COMPRESSION_ALGORITHM_GZIP:
netdata_log_error("STREAM_COMPRESSION: GZIP compression error on 'host:%s'. Disabling GZIP for this node.",
rrdhost_hostname(s->host));
s->disabled_capabilities |= STREAM_CAP_GZIP;
break;
case COMPRESSION_ALGORITHM_LZ4:
netdata_log_error("STREAM_COMPRESSION: LZ4 compression error on 'host:%s'. Disabling ZSTD for this node.",
rrdhost_hostname(s->host));
s->disabled_capabilities |= STREAM_CAP_LZ4;
break;
case COMPRESSION_ALGORITHM_ZSTD:
netdata_log_error("STREAM_COMPRESSION: ZSTD compression error on 'host:%s'. Disabling ZSTD for this node.",
rrdhost_hostname(s->host));
s->disabled_capabilities |= STREAM_CAP_ZSTD;
break;
case COMPRESSION_ALGORITHM_BROTLI:
netdata_log_error("STREAM_COMPRESSION: BROTLI compression error on 'host:%s'. Disabling BROTLI for this node.",
rrdhost_hostname(s->host));
s->disabled_capabilities |= STREAM_CAP_BROTLI;
break;
}
}
// ----------------------------------------------------------------------------
// compressor public API
void rrdpush_compressor_init(struct compressor_state *state) {
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
rrdpush_compressor_init_zstd(state);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
rrdpush_compressor_init_lz4(state);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
rrdpush_compressor_init_brotli(state);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
rrdpush_compressor_init_gzip(state);
break;
}
simple_ring_buffer_reset(&state->input);
simple_ring_buffer_reset(&state->output);
}
void rrdpush_compressor_destroy(struct compressor_state *state) {
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
rrdpush_compressor_destroy_zstd(state);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
rrdpush_compressor_destroy_lz4(state);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
rrdpush_compressor_destroy_brotli(state);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
rrdpush_compressor_destroy_gzip(state);
break;
}
state->initialized = false;
simple_ring_buffer_destroy(&state->input);
simple_ring_buffer_destroy(&state->output);
}
size_t rrdpush_compress(struct compressor_state *state, const char *data, size_t size, const char **out) {
size_t ret = 0;
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
ret = rrdpush_compress_zstd(state, data, size, out);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
ret = rrdpush_compress_lz4(state, data, size, out);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
ret = rrdpush_compress_brotli(state, data, size, out);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
ret = rrdpush_compress_gzip(state, data, size, out);
break;
}
if(unlikely(ret >= COMPRESSION_MAX_CHUNK)) {
netdata_log_error("RRDPUSH_COMPRESS: compressed data is %zu bytes, which is >= than the max chunk size %d",
ret, COMPRESSION_MAX_CHUNK);
return 0;
}
return ret;
}
// ----------------------------------------------------------------------------
// decompressor public API
void rrdpush_decompressor_destroy(struct decompressor_state *state) {
if(unlikely(!state->initialized))
return;
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
rrdpush_decompressor_destroy_zstd(state);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
rrdpush_decompressor_destroy_lz4(state);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
rrdpush_decompressor_destroy_brotli(state);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
rrdpush_decompressor_destroy_gzip(state);
break;
}
simple_ring_buffer_destroy(&state->output);
state->initialized = false;
}
void rrdpush_decompressor_init(struct decompressor_state *state) {
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
rrdpush_decompressor_init_zstd(state);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
rrdpush_decompressor_init_lz4(state);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
rrdpush_decompressor_init_brotli(state);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
rrdpush_decompressor_init_gzip(state);
break;
}
state->signature_size = RRDPUSH_COMPRESSION_SIGNATURE_SIZE;
simple_ring_buffer_reset(&state->output);
}
size_t rrdpush_decompress(struct decompressor_state *state, const char *compressed_data, size_t compressed_size) {
if (unlikely(state->output.read_pos != state->output.write_pos))
fatal("RRDPUSH_DECOMPRESS: asked to decompress new data, while there are unread data in the decompression buffer!");
size_t ret = 0;
switch(state->algorithm) {
#ifdef ENABLE_ZSTD
case COMPRESSION_ALGORITHM_ZSTD:
ret = rrdpush_decompress_zstd(state, compressed_data, compressed_size);
break;
#endif
#ifdef ENABLE_LZ4
case COMPRESSION_ALGORITHM_LZ4:
ret = rrdpush_decompress_lz4(state, compressed_data, compressed_size);
break;
#endif
#ifdef ENABLE_BROTLI
case COMPRESSION_ALGORITHM_BROTLI:
ret = rrdpush_decompress_brotli(state, compressed_data, compressed_size);
break;
#endif
default:
case COMPRESSION_ALGORITHM_GZIP:
ret = rrdpush_decompress_gzip(state, compressed_data, compressed_size);
break;
}
// for backwards compatibility we cannot check for COMPRESSION_MAX_MSG_SIZE,
// because old children may send this big payloads.
if(unlikely(ret > COMPRESSION_MAX_CHUNK)) {
netdata_log_error("RRDPUSH_DECOMPRESS: decompressed data is %zu bytes, which is bigger than the max msg size %d",
ret, COMPRESSION_MAX_CHUNK);
return 0;
}
return ret;
}
// ----------------------------------------------------------------------------
// unit test
static inline long int my_random (void) {
return random();
}
void unittest_generate_random_name(char *dst, size_t size) {
if(size < 7)
size = 7;
size_t len = 5 + my_random() % (size - 6);
for(size_t i = 0; i < len ; i++) {
if(my_random() % 2 == 0)
dst[i] = 'A' + my_random() % 26;
else
dst[i] = 'a' + my_random() % 26;
}
dst[len] = '\0';
}
void unittest_generate_message(BUFFER *wb, time_t now_s, size_t counter) {
bool with_slots = true;
NUMBER_ENCODING integer_encoding = NUMBER_ENCODING_BASE64;
NUMBER_ENCODING doubles_encoding = NUMBER_ENCODING_BASE64;
time_t update_every = 1;
time_t point_end_time_s = now_s;
time_t wall_clock_time_s = now_s;
size_t chart_slot = counter + 1;
size_t dimensions = 2 + my_random() % 5;
char chart[RRD_ID_LENGTH_MAX + 1] = "name";
unittest_generate_random_name(chart, 5 + my_random() % 30);
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_BEGIN_V2, sizeof(PLUGINSD_KEYWORD_BEGIN_V2) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, chart_slot);
}
buffer_fast_strcat(wb, " '", 2);
buffer_strcat(wb, chart);
buffer_fast_strcat(wb, "' ", 2);
buffer_print_uint64_encoded(wb, integer_encoding, update_every);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, point_end_time_s);
buffer_fast_strcat(wb, " ", 1);
if(point_end_time_s == wall_clock_time_s)
buffer_fast_strcat(wb, "#", 1);
else
buffer_print_uint64_encoded(wb, integer_encoding, wall_clock_time_s);
buffer_fast_strcat(wb, "\n", 1);
for(size_t d = 0; d < dimensions ;d++) {
size_t dim_slot = d + 1;
char dim_id[RRD_ID_LENGTH_MAX + 1] = "dimension";
unittest_generate_random_name(dim_id, 10 + my_random() % 20);
int64_t last_collected_value = (my_random() % 2 == 0) ? (int64_t)(counter + d) : (int64_t)my_random();
NETDATA_DOUBLE value = (my_random() % 2 == 0) ? (NETDATA_DOUBLE)my_random() / ((NETDATA_DOUBLE)my_random() + 1) : (NETDATA_DOUBLE)last_collected_value;
SN_FLAGS flags = (my_random() % 1000 == 0) ? SN_FLAG_NONE : SN_FLAG_NOT_ANOMALOUS;
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_SET_V2, sizeof(PLUGINSD_KEYWORD_SET_V2) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, dim_slot);
}
buffer_fast_strcat(wb, " '", 2);
buffer_strcat(wb, dim_id);
buffer_fast_strcat(wb, "' ", 2);
buffer_print_int64_encoded(wb, integer_encoding, last_collected_value);
buffer_fast_strcat(wb, " ", 1);
if((NETDATA_DOUBLE)last_collected_value == value)
buffer_fast_strcat(wb, "#", 1);
else
buffer_print_netdata_double_encoded(wb, doubles_encoding, value);
buffer_fast_strcat(wb, " ", 1);
buffer_print_sn_flags(wb, flags, true);
buffer_fast_strcat(wb, "\n", 1);
}
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_END_V2 "\n", sizeof(PLUGINSD_KEYWORD_END_V2) - 1 + 1);
}
int unittest_rrdpush_compression_speed(compression_algorithm_t algorithm, const char *name) {
fprintf(stderr, "\nTesting streaming compression speed with %s\n", name);
struct compressor_state cctx = {
.initialized = false,
.algorithm = algorithm,
};
struct decompressor_state dctx = {
.initialized = false,
.algorithm = algorithm,
};
rrdpush_compressor_init(&cctx);
rrdpush_decompressor_init(&dctx);
int errors = 0;
BUFFER *wb = buffer_create(COMPRESSION_MAX_MSG_SIZE, NULL);
time_t now_s = now_realtime_sec();
usec_t compression_ut = 0;
usec_t decompression_ut = 0;
size_t bytes_compressed = 0;
size_t bytes_uncompressed = 0;
usec_t compression_started_ut = now_monotonic_usec();
usec_t decompression_started_ut = compression_started_ut;
for(int i = 0; i < 10000 ;i++) {
compression_started_ut = now_monotonic_usec();
decompression_ut += compression_started_ut - decompression_started_ut;
buffer_flush(wb);
while(buffer_strlen(wb) < COMPRESSION_MAX_MSG_SIZE - 1024)
unittest_generate_message(wb, now_s, i);
const char *txt = buffer_tostring(wb);
size_t txt_len = buffer_strlen(wb);
bytes_uncompressed += txt_len;
const char *out;
size_t size = rrdpush_compress(&cctx, txt, txt_len, &out);
bytes_compressed += size;
decompression_started_ut = now_monotonic_usec();
compression_ut += decompression_started_ut - compression_started_ut;
if(size == 0) {
fprintf(stderr, "iteration %d: compressed size %zu is zero\n",
i, size);
errors++;
goto cleanup;
}
else if(size >= COMPRESSION_MAX_CHUNK) {
fprintf(stderr, "iteration %d: compressed size %zu exceeds max allowed size\n",
i, size);
errors++;
goto cleanup;
}
else {
size_t dtxt_len = rrdpush_decompress(&dctx, out, size);
char *dtxt = (char *) &dctx.output.data[dctx.output.read_pos];
if(rrdpush_decompressed_bytes_in_buffer(&dctx) != dtxt_len) {
fprintf(stderr, "iteration %d: decompressed size %zu does not rrdpush_decompressed_bytes_in_buffer() %zu\n",
i, dtxt_len, rrdpush_decompressed_bytes_in_buffer(&dctx)
);
errors++;
goto cleanup;
}
if(!dtxt_len) {
fprintf(stderr, "iteration %d: decompressed size is zero\n", i);
errors++;
goto cleanup;
}
else if(dtxt_len != txt_len) {
fprintf(stderr, "iteration %d: decompressed size %zu does not match original size %zu\n",
i, dtxt_len, txt_len
);
errors++;
goto cleanup;
}
else {
if(memcmp(txt, dtxt, txt_len) != 0) {
fprintf(stderr, "iteration %d: decompressed data '%s' do not match original data length %zu\n",
i, dtxt, txt_len);
errors++;
goto cleanup;
}
}
}
// here we are supposed to copy the data and advance the position
dctx.output.read_pos += rrdpush_decompressed_bytes_in_buffer(&dctx);
}
cleanup:
rrdpush_compressor_destroy(&cctx);
rrdpush_decompressor_destroy(&dctx);
if(errors)
fprintf(stderr, "Compression with %s: FAILED (%d errors)\n", name, errors);
else
fprintf(stderr, "Compression with %s: OK "
"(compression %zu usec, decompression %zu usec, bytes raw %zu, compressed %zu, savings ratio %0.2f%%)\n",
name, compression_ut, decompression_ut,
bytes_uncompressed, bytes_compressed,
100.0 - (double)bytes_compressed * 100.0 / (double)bytes_uncompressed);
return errors;
}
int unittest_rrdpush_compression(compression_algorithm_t algorithm, const char *name) {
fprintf(stderr, "\nTesting streaming compression with %s\n", name);
struct compressor_state cctx = {
.initialized = false,
.algorithm = algorithm,
};
struct decompressor_state dctx = {
.initialized = false,
.algorithm = algorithm,
};
char txt[COMPRESSION_MAX_MSG_SIZE];
rrdpush_compressor_init(&cctx);
rrdpush_decompressor_init(&dctx);
int errors = 0;
memset(txt, '=', COMPRESSION_MAX_MSG_SIZE);
for(int i = 0; i < COMPRESSION_MAX_MSG_SIZE ;i++) {
txt[i] = 'A' + (i % 26);
size_t txt_len = i + 1;
const char *out;
size_t size = rrdpush_compress(&cctx, txt, txt_len, &out);
if(size == 0) {
fprintf(stderr, "iteration %d: compressed size %zu is zero\n",
i, size);
errors++;
goto cleanup;
}
else if(size >= COMPRESSION_MAX_CHUNK) {
fprintf(stderr, "iteration %d: compressed size %zu exceeds max allowed size\n",
i, size);
errors++;
goto cleanup;
}
else {
size_t dtxt_len = rrdpush_decompress(&dctx, out, size);
char *dtxt = (char *) &dctx.output.data[dctx.output.read_pos];
if(rrdpush_decompressed_bytes_in_buffer(&dctx) != dtxt_len) {
fprintf(stderr, "iteration %d: decompressed size %zu does not rrdpush_decompressed_bytes_in_buffer() %zu\n",
i, dtxt_len, rrdpush_decompressed_bytes_in_buffer(&dctx)
);
errors++;
goto cleanup;
}
if(!dtxt_len) {
fprintf(stderr, "iteration %d: decompressed size is zero\n", i);
errors++;
goto cleanup;
}
else if(dtxt_len != txt_len) {
fprintf(stderr, "iteration %d: decompressed size %zu does not match original size %zu\n",
i, dtxt_len, txt_len
);
errors++;
goto cleanup;
}
else {
if(memcmp(txt, dtxt, txt_len) != 0) {
txt[txt_len] = '\0';
dtxt[txt_len + 5] = '\0';
fprintf(stderr, "iteration %d: decompressed data '%s' do not match original data '%s' of length %zu\n",
i, dtxt, txt, txt_len);
errors++;
goto cleanup;
}
}
}
// fill the compressed buffer with garbage
memset((void *)out, 'x', size);
// here we are supposed to copy the data and advance the position
dctx.output.read_pos += rrdpush_decompressed_bytes_in_buffer(&dctx);
}
cleanup:
rrdpush_compressor_destroy(&cctx);
rrdpush_decompressor_destroy(&dctx);
if(errors)
fprintf(stderr, "Compression with %s: FAILED (%d errors)\n", name, errors);
else
fprintf(stderr, "Compression with %s: OK\n", name);
return errors;
}
int unittest_rrdpush_compressions(void) {
int ret = 0;
ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_ZSTD, "ZSTD");
ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_LZ4, "LZ4");
ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_BROTLI, "BROTLI");
ret += unittest_rrdpush_compression(COMPRESSION_ALGORITHM_GZIP, "GZIP");
ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_ZSTD, "ZSTD");
ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_LZ4, "LZ4");
ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_BROTLI, "BROTLI");
ret += unittest_rrdpush_compression_speed(COMPRESSION_ALGORITHM_GZIP, "GZIP");
return ret;
}