0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-05-11 20:25:51 +00:00
netdata_netdata/streaming/replication.c
Costa Tsaousis 3e508c8f95
New logging layer ()
* cleanup of logging - wip

* first working iteration

* add errno annotator

* replace old logging functions with netdata_logger()

* cleanup

* update error_limit

* fix remanining error_limit references

* work on fatal()

* started working on structured logs

* full cleanup

* default logging to files; fix all plugins initialization

* fix formatting of numbers

* cleanup and reorg

* fix coverity issues

* cleanup obsolete code

* fix formatting of numbers

* fix log rotation

* fix for older systems

* add detection of systemd journal via stderr

* finished on access.log

* remove left-over transport

* do not add empty fields to the logs

* journal get compact uuids; X-Transaction-ID header is added in web responses

* allow compiling on systems without memfd sealing

* added libnetdata/uuid directory

* move datetime formatters to libnetdata

* add missing files

* link the makefiles in libnetdata

* added uuid_parse_flexi() to parse UUIDs with and without hyphens; the web server now read X-Transaction-ID and uses it for functions and web responses

* added stream receiver, sender, proc plugin and pluginsd log stack

* iso8601 advanced usage; line_splitter module in libnetdata; code cleanup

* add message ids to streaming inbound and outbound connections

* cleanup line_splitter between lines to avoid logging garbage; when killing children, kill them with SIGABRT if internal checks is enabled

* send SIGABRT to external plugins only if we are not shutting down

* fix cross cleanup in pluginsd parser

* fatal when there is a stack error in logs

* compile netdata with -fexceptions

* do not kill external plugins with SIGABRT

* metasync info logs to debug level

* added severity to logs

* added json output; added options per log output; added documentation; fixed issues mentioned

* allow memfd only on linux

* moved journal low level functions to journal.c/h

* move health logs to daemon.log with proper priorities

* fixed a couple of bugs; health log in journal

* updated docs

* systemd-cat-native command to push structured logs to journal from the command line

* fix makefiles

* restored NETDATA_LOG_SEVERITY_LEVEL

* fix makefiles

* systemd-cat-native can also work as the logger of Netdata scripts

* do not require a socket to systemd-journal to log-as-netdata

* alarm notify logs in native format

* properly compare log ids

* fatals log alerts; alarm-notify.sh working

* fix overflow warning

* alarm-notify.sh now logs the request (command line)

* anotate external plugins logs with the function cmd they run

* added context, component and type to alarm-notify.sh; shell sanitization removes control character and characters that may be expanded by bash

* reformatted alarm-notify logs

* unify cgroup-network-helper.sh

* added quotes around params

* charts.d.plugin switched logging to journal native

* quotes for logfmt

* unify the status codes of streaming receivers and senders

* alarm-notify: dont log anything, if there is nothing to do

* all external plugins log to stderr when running outside netdata; alarm-notify now shows an error when notifications menthod are needed but are not available

* migrate cgroup-name.sh to new logging

* systemd-cat-native now supports messages with newlines

* socket.c logs use priority

* cleanup log field types

* inherit the systemd set INVOCATION_ID if found

* allow systemd-cat-native to send messages to a systemd-journal-remote URL

* log2journal command that can convert structured logs to journal export format

* various fixes and documentation of log2journal

* updated log2journal docs

* updated log2journal docs

* updated documentation of fields

* allow compiling without libcurl

* do not use socket as format string

* added version information to newly added tools

* updated documentation and help messages

* fix the namespace socket path

* print errno with error

* do not timeout

* updated docs

* updated docs

* updated docs

* log2journal updated docs and params

* when talking to a remote journal, systemd-cat-native batches the messages

* enable lz4 compression for systemd-cat-native when sending messages to a systemd-journal-remote

* Revert "enable lz4 compression for systemd-cat-native when sending messages to a systemd-journal-remote"

This reverts commit b079d53c11.

* note about uncompressed traffic

* log2journal: code reorg and cleanup to make modular

* finished rewriting log2journal

* more comments

* rewriting rules support

* increased limits

* updated docs

* updated docs

* fix old log call

* use journal only when stderr is connected to journal

* update netdata.spec for libcurl, libpcre2 and log2journal

* pcre2-devel

* do not require pcre2 in centos < 8, amazonlinux < 2023, open suse

* log2journal only on systems pcre2 is available

* ignore log2journal in .gitignore

* avoid log2journal on centos 7, amazonlinux 2 and opensuse

* add pcre2-8 to static build

* undo last commit

* Bundle to static

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Add build deps for deb packages

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Add dependencies; build from source

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Test build for amazon linux and centos expect to fail for suse

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* fix minor oversight

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Reorg code

* Add the install from source (deps) as a TODO
* Not enable the build on suse ecosystem

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

---------

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>
Co-authored-by: Tasos Katsoulas <tasos@netdata.cloud>
2023-11-22 10:27:25 +02:00

2036 lines
81 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "replication.h"
#include "Judy.h"
#define STREAMING_START_MAX_SENDER_BUFFER_PERCENTAGE_ALLOWED 50ULL
#define MAX_REPLICATION_MESSAGE_PERCENT_SENDER_BUFFER 25ULL
#define MAX_SENDER_BUFFER_PERCENTAGE_ALLOWED 50ULL
#define MIN_SENDER_BUFFER_PERCENTAGE_ALLOWED 10ULL
#define WORKER_JOB_FIND_NEXT 1
#define WORKER_JOB_QUERYING 2
#define WORKER_JOB_DELETE_ENTRY 3
#define WORKER_JOB_FIND_CHART 4
#define WORKER_JOB_PREPARE_QUERY 5
#define WORKER_JOB_CHECK_CONSISTENCY 6
#define WORKER_JOB_BUFFER_COMMIT 7
#define WORKER_JOB_CLEANUP 8
#define WORKER_JOB_WAIT 9
// master thread worker jobs
#define WORKER_JOB_STATISTICS 10
#define WORKER_JOB_CUSTOM_METRIC_PENDING_REQUESTS 11
#define WORKER_JOB_CUSTOM_METRIC_SKIPPED_NO_ROOM 12
#define WORKER_JOB_CUSTOM_METRIC_COMPLETION 13
#define WORKER_JOB_CUSTOM_METRIC_ADDED 14
#define WORKER_JOB_CUSTOM_METRIC_DONE 15
#define WORKER_JOB_CUSTOM_METRIC_SENDER_RESETS 16
#define WORKER_JOB_CUSTOM_METRIC_SENDER_FULL 17
#define ITERATIONS_IDLE_WITHOUT_PENDING_TO_RUN_SENDER_VERIFICATION 30
#define SECONDS_TO_RESET_POINT_IN_TIME 10
static struct replication_query_statistics replication_queries = {
.spinlock = NETDATA_SPINLOCK_INITIALIZER,
.queries_started = 0,
.queries_finished = 0,
.points_read = 0,
.points_generated = 0,
};
struct replication_query_statistics replication_get_query_statistics(void) {
spinlock_lock(&replication_queries.spinlock);
struct replication_query_statistics ret = replication_queries;
spinlock_unlock(&replication_queries.spinlock);
return ret;
}
size_t replication_buffers_allocated = 0;
size_t replication_allocated_buffers(void) {
return __atomic_load_n(&replication_buffers_allocated, __ATOMIC_RELAXED);
}
// ----------------------------------------------------------------------------
// sending replication replies
struct replication_dimension {
STORAGE_POINT sp;
struct storage_engine_query_handle handle;
bool enabled;
bool skip;
DICTIONARY *dict;
const DICTIONARY_ITEM *rda;
RRDDIM *rd;
};
struct replication_query {
RRDSET *st;
struct {
time_t first_entry_t;
time_t last_entry_t;
} db;
struct { // what the parent requested
time_t after;
time_t before;
bool enable_streaming;
} request;
struct { // what the child will do
time_t after;
time_t before;
bool enable_streaming;
bool locked_data_collection;
bool execute;
bool interrupted;
STREAM_CAPABILITIES capabilities;
} query;
time_t wall_clock_time;
size_t points_read;
size_t points_generated;
STORAGE_ENGINE_BACKEND backend;
struct replication_request *rq;
size_t dimensions;
struct replication_dimension data[];
};
static struct replication_query *replication_query_prepare(
RRDSET *st,
time_t db_first_entry,
time_t db_last_entry,
time_t requested_after,
time_t requested_before,
bool requested_enable_streaming,
time_t query_after,
time_t query_before,
bool query_enable_streaming,
time_t wall_clock_time,
STREAM_CAPABILITIES capabilities
) {
size_t dimensions = rrdset_number_of_dimensions(st);
struct replication_query *q = callocz(1, sizeof(struct replication_query) + dimensions * sizeof(struct replication_dimension));
__atomic_add_fetch(&replication_buffers_allocated, sizeof(struct replication_query) + dimensions * sizeof(struct replication_dimension), __ATOMIC_RELAXED);
q->dimensions = dimensions;
q->st = st;
q->db.first_entry_t = db_first_entry;
q->db.last_entry_t = db_last_entry;
q->request.after = requested_after,
q->request.before = requested_before,
q->request.enable_streaming = requested_enable_streaming,
q->query.after = query_after;
q->query.before = query_before;
q->query.enable_streaming = query_enable_streaming;
q->query.capabilities = capabilities;
q->wall_clock_time = wall_clock_time;
if (!q->dimensions || !q->query.after || !q->query.before) {
q->query.execute = false;
q->dimensions = 0;
return q;
}
if(q->query.enable_streaming) {
spinlock_lock(&st->data_collection_lock);
q->query.locked_data_collection = true;
if (st->last_updated.tv_sec > q->query.before) {
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
internal_error(true,
"STREAM_SENDER REPLAY: 'host:%s/chart:%s' "
"has start_streaming = true, "
"adjusting replication before timestamp from %llu to %llu",
rrdhost_hostname(st->rrdhost), rrdset_id(st),
(unsigned long long) q->query.before,
(unsigned long long) st->last_updated.tv_sec
);
#endif
q->query.before = MIN(st->last_updated.tv_sec, wall_clock_time);
}
}
q->backend = st->rrdhost->db[0].eng->backend;
// prepare our array of dimensions
size_t count = 0;
RRDDIM *rd;
rrddim_foreach_read(rd, st) {
if (unlikely(!rd || !rd_dfe.item || !rrddim_check_upstream_exposed(rd)))
continue;
if (unlikely(rd_dfe.counter >= q->dimensions)) {
internal_error(true,
"STREAM_SENDER REPLAY ERROR: 'host:%s/chart:%s' has more dimensions than the replicated ones",
rrdhost_hostname(st->rrdhost), rrdset_id(st));
break;
}
struct replication_dimension *d = &q->data[rd_dfe.counter];
d->dict = rd_dfe.dict;
d->rda = dictionary_acquired_item_dup(rd_dfe.dict, rd_dfe.item);
d->rd = rd;
storage_engine_query_init(q->backend, rd->tiers[0].db_metric_handle, &d->handle, q->query.after, q->query.before,
q->query.locked_data_collection ? STORAGE_PRIORITY_HIGH : STORAGE_PRIORITY_LOW);
d->enabled = true;
d->skip = false;
count++;
}
rrddim_foreach_done(rd);
if(!count) {
// no data for this chart
q->query.execute = false;
if(q->query.locked_data_collection) {
spinlock_unlock(&st->data_collection_lock);
q->query.locked_data_collection = false;
}
}
else {
// we have data for this chart
q->query.execute = true;
}
return q;
}
static void replication_send_chart_collection_state(BUFFER *wb, RRDSET *st, STREAM_CAPABILITIES capabilities) {
bool with_slots = (capabilities & STREAM_CAP_SLOTS) ? true : false;
NUMBER_ENCODING integer_encoding = (capabilities & STREAM_CAP_IEEE754) ? NUMBER_ENCODING_BASE64 : NUMBER_ENCODING_DECIMAL;
RRDDIM *rd;
rrddim_foreach_read(rd, st){
if (!rrddim_check_upstream_exposed(rd)) continue;
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_RRDDIM_STATE, sizeof(PLUGINSD_KEYWORD_REPLAY_RRDDIM_STATE) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, rd->rrdpush.sender.dim_slot);
}
buffer_fast_strcat(wb, " '", 2);
buffer_fast_strcat(wb, rrddim_id(rd), string_strlen(rd->id));
buffer_fast_strcat(wb, "' ", 2);
buffer_print_uint64_encoded(wb, integer_encoding, (usec_t) rd->collector.last_collected_time.tv_sec * USEC_PER_SEC +
(usec_t) rd->collector.last_collected_time.tv_usec);
buffer_fast_strcat(wb, " ", 1);
buffer_print_int64_encoded(wb, integer_encoding, rd->collector.last_collected_value);
buffer_fast_strcat(wb, " ", 1);
buffer_print_netdata_double_encoded(wb, integer_encoding, rd->collector.last_calculated_value);
buffer_fast_strcat(wb, " ", 1);
buffer_print_netdata_double_encoded(wb, integer_encoding, rd->collector.last_stored_value);
buffer_fast_strcat(wb, "\n", 1);
}
rrddim_foreach_done(rd);
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_RRDSET_STATE " ", sizeof(PLUGINSD_KEYWORD_REPLAY_RRDSET_STATE) - 1 + 1);
buffer_print_uint64_encoded(wb, integer_encoding, (usec_t) st->last_collected_time.tv_sec * USEC_PER_SEC + (usec_t) st->last_collected_time.tv_usec);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, (usec_t) st->last_updated.tv_sec * USEC_PER_SEC + (usec_t) st->last_updated.tv_usec);
buffer_fast_strcat(wb, "\n", 1);
}
static void replication_query_finalize(BUFFER *wb, struct replication_query *q, bool executed) {
size_t dimensions = q->dimensions;
if(wb && q->query.enable_streaming)
replication_send_chart_collection_state(wb, q->st, q->query.capabilities);
if(q->query.locked_data_collection) {
spinlock_unlock(&q->st->data_collection_lock);
q->query.locked_data_collection = false;
}
// release all the dictionary items acquired
// finalize the queries
size_t queries = 0;
for (size_t i = 0; i < dimensions; i++) {
struct replication_dimension *d = &q->data[i];
if (unlikely(!d->enabled)) continue;
storage_engine_query_finalize(&d->handle);
dictionary_acquired_item_release(d->dict, d->rda);
// update global statistics
queries++;
}
if(executed) {
spinlock_lock(&replication_queries.spinlock);
replication_queries.queries_started += queries;
replication_queries.queries_finished += queries;
replication_queries.points_read += q->points_read;
replication_queries.points_generated += q->points_generated;
if(q->st && q->st->rrdhost->sender) {
struct sender_state *s = q->st->rrdhost->sender;
s->replication.latest_completed_before_t = q->query.before;
}
spinlock_unlock(&replication_queries.spinlock);
}
__atomic_sub_fetch(&replication_buffers_allocated, sizeof(struct replication_query) + dimensions * sizeof(struct replication_dimension), __ATOMIC_RELAXED);
freez(q);
}
static void replication_query_align_to_optimal_before(struct replication_query *q) {
if(!q->query.execute || q->query.enable_streaming)
return;
size_t dimensions = q->dimensions;
time_t expanded_before = 0;
for (size_t i = 0; i < dimensions; i++) {
struct replication_dimension *d = &q->data[i];
if(unlikely(!d->enabled)) continue;
time_t new_before = storage_engine_align_to_optimal_before(&d->handle);
if (!expanded_before || new_before < expanded_before)
expanded_before = new_before;
}
if(expanded_before > q->query.before && // it is later than the original
(expanded_before - q->query.before) / q->st->update_every < 1024 && // it is reasonable (up to a page)
expanded_before < q->st->last_updated.tv_sec && // it is not the chart's last updated time
expanded_before < q->wall_clock_time) // it is not later than the wall clock time
q->query.before = expanded_before;
}
static bool replication_query_execute(BUFFER *wb, struct replication_query *q, size_t max_msg_size) {
replication_query_align_to_optimal_before(q);
bool with_slots = (q->query.capabilities & STREAM_CAP_SLOTS) ? true : false;
NUMBER_ENCODING integer_encoding = (q->query.capabilities & STREAM_CAP_IEEE754) ? NUMBER_ENCODING_BASE64 : NUMBER_ENCODING_DECIMAL;
time_t after = q->query.after;
time_t before = q->query.before;
size_t dimensions = q->dimensions;
time_t wall_clock_time = q->wall_clock_time;
bool finished_with_gap = false;
size_t points_read = 0, points_generated = 0;
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
time_t actual_after = 0, actual_before = 0;
#endif
time_t now = after + 1;
time_t last_end_time_in_buffer = 0;
while(now <= before) {
time_t min_start_time = 0, max_start_time = 0, min_end_time = 0, max_end_time = 0, min_update_every = 0, max_update_every = 0;
for (size_t i = 0; i < dimensions ;i++) {
struct replication_dimension *d = &q->data[i];
if(unlikely(!d->enabled || d->skip)) continue;
// fetch the first valid point for the dimension
int max_skip = 1000;
while(d->sp.end_time_s < now && !storage_engine_query_is_finished(&d->handle) && max_skip-- >= 0) {
d->sp = storage_engine_query_next_metric(&d->handle);
points_read++;
}
if(max_skip <= 0) {
d->skip = true;
nd_log_limit_static_global_var(erl, 1, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_ERR,
"STREAM_SENDER REPLAY ERROR: 'host:%s/chart:%s/dim:%s': db does not advance the query "
"beyond time %llu (tried 1000 times to get the next point and always got back a point in the past)",
rrdhost_hostname(q->st->rrdhost), rrdset_id(q->st), rrddim_id(d->rd),
(unsigned long long) now);
continue;
}
if(unlikely(d->sp.end_time_s < now || d->sp.end_time_s < d->sp.start_time_s))
// this dimension does not provide any data
continue;
time_t update_every = d->sp.end_time_s - d->sp.start_time_s;
if(unlikely(!update_every))
update_every = q->st->update_every;
if(unlikely(!min_update_every))
min_update_every = update_every;
if(unlikely(!min_start_time))
min_start_time = d->sp.start_time_s;
if(unlikely(!min_end_time))
min_end_time = d->sp.end_time_s;
min_update_every = MIN(min_update_every, update_every);
max_update_every = MAX(max_update_every, update_every);
min_start_time = MIN(min_start_time, d->sp.start_time_s);
max_start_time = MAX(max_start_time, d->sp.start_time_s);
min_end_time = MIN(min_end_time, d->sp.end_time_s);
max_end_time = MAX(max_end_time, d->sp.end_time_s);
}
if (unlikely(min_update_every != max_update_every ||
min_start_time != max_start_time)) {
time_t fix_min_start_time;
if(last_end_time_in_buffer &&
last_end_time_in_buffer >= min_start_time &&
last_end_time_in_buffer <= max_start_time) {
fix_min_start_time = last_end_time_in_buffer;
}
else
fix_min_start_time = min_end_time - min_update_every;
#ifdef NETDATA_INTERNAL_CHECKS
nd_log_limit_static_global_var(erl, 1, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_WARNING,
"REPLAY WARNING: 'host:%s/chart:%s' "
"misaligned dimensions, "
"update every (min: %ld, max: %ld), "
"start time (min: %ld, max: %ld), "
"end time (min %ld, max %ld), "
"now %ld, last end time sent %ld, "
"min start time is fixed to %ld",
rrdhost_hostname(q->st->rrdhost), rrdset_id(q->st),
min_update_every, max_update_every,
min_start_time, max_start_time,
min_end_time, max_end_time,
now, last_end_time_in_buffer,
fix_min_start_time
);
#endif
min_start_time = fix_min_start_time;
}
if(likely(min_start_time <= now && min_end_time >= now)) {
// we have a valid point
if (unlikely(min_end_time == min_start_time))
min_start_time = min_end_time - q->st->update_every;
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
if (unlikely(!actual_after))
actual_after = min_end_time;
actual_before = min_end_time;
#endif
if(buffer_strlen(wb) > max_msg_size && last_end_time_in_buffer) {
q->query.before = last_end_time_in_buffer;
q->query.enable_streaming = false;
internal_error(true, "REPLICATION: current buffer size %zu is more than the "
"max message size %zu for chart '%s' of host '%s'. "
"Interrupting replication request (%ld to %ld, %s) at %ld to %ld, %s.",
buffer_strlen(wb), max_msg_size, rrdset_id(q->st), rrdhost_hostname(q->st->rrdhost),
q->request.after, q->request.before, q->request.enable_streaming?"true":"false",
q->query.after, q->query.before, q->query.enable_streaming?"true":"false");
q->query.interrupted = true;
break;
}
last_end_time_in_buffer = min_end_time;
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_BEGIN, sizeof(PLUGINSD_KEYWORD_REPLAY_BEGIN) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, q->st->rrdpush.sender.chart_slot);
}
buffer_fast_strcat(wb, " '' ", 4);
buffer_print_uint64_encoded(wb, integer_encoding, min_start_time);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, min_end_time);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, wall_clock_time);
buffer_fast_strcat(wb, "\n", 1);
// output the replay values for this time
for (size_t i = 0; i < dimensions; i++) {
struct replication_dimension *d = &q->data[i];
if (unlikely(!d->enabled)) continue;
if (likely( d->sp.start_time_s <= min_end_time &&
d->sp.end_time_s >= min_end_time &&
!storage_point_is_unset(d->sp) &&
!storage_point_is_gap(d->sp))) {
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_SET, sizeof(PLUGINSD_KEYWORD_REPLAY_SET) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, d->rd->rrdpush.sender.dim_slot);
}
buffer_fast_strcat(wb, " \"", 2);
buffer_fast_strcat(wb, rrddim_id(d->rd), string_strlen(d->rd->id));
buffer_fast_strcat(wb, "\" ", 2);
buffer_print_netdata_double_encoded(wb, integer_encoding, d->sp.sum);
buffer_fast_strcat(wb, " ", 1);
buffer_print_sn_flags(wb, d->sp.flags, q->query.capabilities & STREAM_CAP_INTERPOLATED);
buffer_fast_strcat(wb, "\n", 1);
points_generated++;
}
}
now = min_end_time + 1;
}
else if(unlikely(min_end_time < now))
// the query does not progress
break;
else {
// we have gap - all points are in the future
now = min_start_time;
if(min_start_time > before && !points_generated) {
before = q->query.before = min_start_time - 1;
finished_with_gap = true;
break;
}
}
}
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
if(actual_after) {
char actual_after_buf[LOG_DATE_LENGTH + 1], actual_before_buf[LOG_DATE_LENGTH + 1];
log_date(actual_after_buf, LOG_DATE_LENGTH, actual_after);
log_date(actual_before_buf, LOG_DATE_LENGTH, actual_before);
internal_error(true,
"STREAM_SENDER REPLAY: 'host:%s/chart:%s': sending data %llu [%s] to %llu [%s] (requested %llu [delta %lld] to %llu [delta %lld])",
rrdhost_hostname(q->st->rrdhost), rrdset_id(q->st),
(unsigned long long)actual_after, actual_after_buf, (unsigned long long)actual_before, actual_before_buf,
(unsigned long long)after, (long long)(actual_after - after), (unsigned long long)before, (long long)(actual_before - before));
}
else
internal_error(true,
"STREAM_SENDER REPLAY: 'host:%s/chart:%s': nothing to send (requested %llu to %llu)",
rrdhost_hostname(q->st->rrdhost), rrdset_id(q->st),
(unsigned long long)after, (unsigned long long)before);
#endif // NETDATA_LOG_REPLICATION_REQUESTS
q->points_read += points_read;
q->points_generated += points_generated;
if(last_end_time_in_buffer < before - q->st->update_every)
finished_with_gap = true;
return finished_with_gap;
}
static struct replication_query *replication_response_prepare(
RRDSET *st,
bool requested_enable_streaming,
time_t requested_after,
time_t requested_before,
STREAM_CAPABILITIES capabilities
) {
time_t wall_clock_time = now_realtime_sec();
if(requested_after > requested_before) {
// flip them
time_t t = requested_before;
requested_before = requested_after;
requested_after = t;
}
if(requested_after > wall_clock_time) {
requested_after = 0;
requested_before = 0;
requested_enable_streaming = true;
}
if(requested_before > wall_clock_time) {
requested_before = wall_clock_time;
requested_enable_streaming = true;
}
time_t query_after = requested_after;
time_t query_before = requested_before;
bool query_enable_streaming = requested_enable_streaming;
time_t db_first_entry = 0, db_last_entry = 0;
rrdset_get_retention_of_tier_for_collected_chart(
st, &db_first_entry, &db_last_entry, wall_clock_time, 0);
if(requested_after == 0 && requested_before == 0 && requested_enable_streaming == true) {
// no data requested - just enable streaming
;
}
else {
if (query_after < db_first_entry)
query_after = db_first_entry;
if (query_before > db_last_entry)
query_before = db_last_entry;
// if the parent asked us to start streaming, then fill the rest with the data that we have
if (requested_enable_streaming)
query_before = db_last_entry;
if (query_after > query_before) {
time_t tmp = query_before;
query_before = query_after;
query_after = tmp;
}
query_enable_streaming = (requested_enable_streaming ||
query_before == db_last_entry ||
!requested_after ||
!requested_before) ? true : false;
}
return replication_query_prepare(
st,
db_first_entry, db_last_entry,
requested_after, requested_before, requested_enable_streaming,
query_after, query_before, query_enable_streaming,
wall_clock_time, capabilities);
}
void replication_response_cancel_and_finalize(struct replication_query *q) {
replication_query_finalize(NULL, q, false);
}
static bool sender_is_still_connected_for_this_request(struct replication_request *rq);
bool replication_response_execute_and_finalize(struct replication_query *q, size_t max_msg_size) {
bool with_slots = (q->query.capabilities & STREAM_CAP_SLOTS) ? true : false;
NUMBER_ENCODING integer_encoding = (q->query.capabilities & STREAM_CAP_IEEE754) ? NUMBER_ENCODING_BASE64 : NUMBER_ENCODING_DECIMAL;
struct replication_request *rq = q->rq;
RRDSET *st = q->st;
RRDHOST *host = st->rrdhost;
// we might want to optimize this by filling a temporary buffer
// and copying the result to the host's buffer in order to avoid
// holding the host's buffer lock for too long
BUFFER *wb = sender_start(host->sender);
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_BEGIN, sizeof(PLUGINSD_KEYWORD_REPLAY_BEGIN) - 1);
if(with_slots) {
buffer_fast_strcat(wb, " "PLUGINSD_KEYWORD_SLOT":", sizeof(PLUGINSD_KEYWORD_SLOT) - 1 + 2);
buffer_print_uint64_encoded(wb, integer_encoding, q->st->rrdpush.sender.chart_slot);
}
buffer_fast_strcat(wb, " '", 2);
buffer_fast_strcat(wb, rrdset_id(st), string_strlen(st->id));
buffer_fast_strcat(wb, "'\n", 2);
bool locked_data_collection = q->query.locked_data_collection;
q->query.locked_data_collection = false;
bool finished_with_gap = false;
if(q->query.execute)
finished_with_gap = replication_query_execute(wb, q, max_msg_size);
time_t after = q->request.after;
time_t before = q->query.before;
bool enable_streaming = q->query.enable_streaming;
replication_query_finalize(wb, q, q->query.execute);
q = NULL; // IMPORTANT: q is invalid now
// get a fresh retention to send to the parent
time_t wall_clock_time = now_realtime_sec();
time_t db_first_entry, db_last_entry;
rrdset_get_retention_of_tier_for_collected_chart(st, &db_first_entry, &db_last_entry, wall_clock_time, 0);
// end with first/last entries we have, and the first start time and
// last end time of the data we sent
buffer_fast_strcat(wb, PLUGINSD_KEYWORD_REPLAY_END " ", sizeof(PLUGINSD_KEYWORD_REPLAY_END) - 1 + 1);
buffer_print_int64_encoded(wb, integer_encoding, st->update_every);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, db_first_entry);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, db_last_entry);
buffer_fast_strcat(wb, enable_streaming ? " true " : " false ", 7);
buffer_print_uint64_encoded(wb, integer_encoding, after);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, before);
buffer_fast_strcat(wb, " ", 1);
buffer_print_uint64_encoded(wb, integer_encoding, wall_clock_time);
buffer_fast_strcat(wb, "\n", 1);
worker_is_busy(WORKER_JOB_BUFFER_COMMIT);
sender_commit(host->sender, wb, STREAM_TRAFFIC_TYPE_REPLICATION);
worker_is_busy(WORKER_JOB_CLEANUP);
if(enable_streaming) {
if(sender_is_still_connected_for_this_request(rq)) {
// enable normal streaming if we have to
// but only if the sender buffer has not been flushed since we started
if(rrdset_flag_check(st, RRDSET_FLAG_SENDER_REPLICATION_IN_PROGRESS)) {
rrdset_flag_clear(st, RRDSET_FLAG_SENDER_REPLICATION_IN_PROGRESS);
rrdset_flag_set(st, RRDSET_FLAG_SENDER_REPLICATION_FINISHED);
rrdhost_sender_replicating_charts_minus_one(st->rrdhost);
if(!finished_with_gap)
st->rrdpush.sender.resync_time_s = 0;
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
internal_error(true, "STREAM_SENDER REPLAY: 'host:%s/chart:%s' streaming starts",
rrdhost_hostname(st->rrdhost), rrdset_id(st));
#endif
}
else
internal_error(true, "REPLAY ERROR: 'host:%s/chart:%s' received start streaming command, but the chart is not in progress replicating",
rrdhost_hostname(st->rrdhost), rrdset_id(st));
}
}
if(locked_data_collection)
spinlock_unlock(&st->data_collection_lock);
return enable_streaming;
}
// ----------------------------------------------------------------------------
// sending replication requests
struct replication_request_details {
struct {
send_command callback;
void *data;
} caller;
RRDHOST *host;
RRDSET *st;
struct {
time_t first_entry_t; // the first entry time the child has
time_t last_entry_t; // the last entry time the child has
time_t wall_clock_time; // the current time of the child
bool fixed_last_entry; // when set we set the last entry to wall clock time
} child_db;
struct {
time_t first_entry_t; // the first entry time we have
time_t last_entry_t; // the last entry time we have
time_t wall_clock_time; // the current local world clock time
} local_db;
struct {
time_t from; // the starting time of the entire gap we have
time_t to; // the ending time of the entire gap we have
} gap;
struct {
time_t after; // the start time we requested previously from this child
time_t before; // the end time we requested previously from this child
} last_request;
struct {
time_t after; // the start time of this replication request - the child will add 1 second
time_t before; // the end time of this replication request
bool start_streaming; // true when we want the child to send anything remaining and start streaming - the child will overwrite 'before'
} wanted;
};
static void replicate_log_request(struct replication_request_details *r, const char *msg) {
#ifdef NETDATA_INTERNAL_CHECKS
internal_error(true,
#else
nd_log_limit_static_global_var(erl, 1, 0);
nd_log_limit(&erl, NDLS_DAEMON, NDLP_ERR,
#endif
"REPLAY ERROR: 'host:%s/chart:%s' child sent: "
"db from %ld to %ld%s, wall clock time %ld, "
"last request from %ld to %ld, "
"issue: %s - "
"sending replication request from %ld to %ld, start streaming %s",
rrdhost_hostname(r->st->rrdhost), rrdset_id(r->st),
r->child_db.first_entry_t,
r->child_db.last_entry_t, r->child_db.fixed_last_entry ? " (fixed)" : "",
r->child_db.wall_clock_time,
r->last_request.after,
r->last_request.before,
msg,
r->wanted.after,
r->wanted.before,
r->wanted.start_streaming ? "true" : "false");
}
static bool send_replay_chart_cmd(struct replication_request_details *r, const char *msg, bool log) {
RRDSET *st = r->st;
if(log)
replicate_log_request(r, msg);
if(st->rrdhost->receiver && (!st->rrdhost->receiver->replication_first_time_t || r->wanted.after < st->rrdhost->receiver->replication_first_time_t))
st->rrdhost->receiver->replication_first_time_t = r->wanted.after;
#ifdef NETDATA_LOG_REPLICATION_REQUESTS
st->replay.log_next_data_collection = true;
char wanted_after_buf[LOG_DATE_LENGTH + 1] = "", wanted_before_buf[LOG_DATE_LENGTH + 1] = "";
if(r->wanted.after)
log_date(wanted_after_buf, LOG_DATE_LENGTH, r->wanted.after);
if(r->wanted.before)
log_date(wanted_before_buf, LOG_DATE_LENGTH, r->wanted.before);
internal_error(true,
"REPLAY: 'host:%s/chart:%s' sending replication request %ld [%s] to %ld [%s], start streaming '%s': %s: "
"last[%ld - %ld] child[%ld - %ld, now %ld %s] local[%ld - %ld, now %ld] gap[%ld - %ld %s] %s"
, rrdhost_hostname(r->host), rrdset_id(r->st)
, r->wanted.after, wanted_after_buf
, r->wanted.before, wanted_before_buf
, r->wanted.start_streaming ? "YES" : "NO"
, msg
, r->last_request.after, r->last_request.before
, r->child_db.first_entry_t, r->child_db.last_entry_t
, r->child_db.wall_clock_time, (r->child_db.wall_clock_time == r->local_db.wall_clock_time) ? "SAME" : (r->child_db.wall_clock_time < r->local_db.wall_clock_time) ? "BEHIND" : "AHEAD"
, r->local_db.first_entry_t, r->local_db.last_entry_t
, r->local_db.wall_clock_time
, r->gap.from, r->gap.to
, (r->gap.from == r->wanted.after) ? "FULL" : "PARTIAL"
, (st->replay.after != 0 || st->replay.before != 0) ? "OVERLAPPING" : ""
);
st->replay.start_streaming = r->wanted.start_streaming;
st->replay.after = r->wanted.after;
st->replay.before = r->wanted.before;
#endif // NETDATA_LOG_REPLICATION_REQUESTS
char buffer[2048 + 1];
snprintfz(buffer, 2048, PLUGINSD_KEYWORD_REPLAY_CHART " \"%s\" \"%s\" %llu %llu\n",
rrdset_id(st), r->wanted.start_streaming ? "true" : "false",
(unsigned long long)r->wanted.after, (unsigned long long)r->wanted.before);
ssize_t ret = r->caller.callback(buffer, r->caller.data);
if (ret < 0) {
netdata_log_error("REPLAY ERROR: 'host:%s/chart:%s' failed to send replication request to child (error %zd)",
rrdhost_hostname(r->host), rrdset_id(r->st), ret);
return false;
}
return true;
}
bool replicate_chart_request(send_command callback, void *callback_data, RRDHOST *host, RRDSET *st,
time_t child_first_entry, time_t child_last_entry, time_t child_wall_clock_time,
time_t prev_first_entry_wanted, time_t prev_last_entry_wanted)
{
struct replication_request_details r = {
.caller = {
.callback = callback,
.data = callback_data,
},
.host = host,
.st = st,
.child_db = {
.first_entry_t = child_first_entry,
.last_entry_t = child_last_entry,
.wall_clock_time = child_wall_clock_time,
.fixed_last_entry = false,
},
.local_db = {
.first_entry_t = 0,
.last_entry_t = 0,
.wall_clock_time = now_realtime_sec(),
},
.last_request = {
.after = prev_first_entry_wanted,
.before = prev_last_entry_wanted,
},
.wanted = {
.after = 0,
.before = 0,
.start_streaming = true,
},
};
if(r.child_db.last_entry_t > r.child_db.wall_clock_time) {
replicate_log_request(&r, "child's db last entry > child's wall clock time");
r.child_db.last_entry_t = r.child_db.wall_clock_time;
r.child_db.fixed_last_entry = true;
}
rrdset_get_retention_of_tier_for_collected_chart(r.st, &r.local_db.first_entry_t, &r.local_db.last_entry_t, r.local_db.wall_clock_time, 0);
// let's find the GAP we have
if(!r.last_request.after || !r.last_request.before) {
// there is no previous request
if(r.local_db.last_entry_t)
// we have some data, let's continue from the last point we have
r.gap.from = r.local_db.last_entry_t;
else
// we don't have any data, the gap is the max timeframe we are allowed to replicate
r.gap.from = r.local_db.wall_clock_time - r.host->rrdpush_seconds_to_replicate;
}
else {
// we had sent a request - let's continue at the point we left it
// for this we don't take into account the actual data in our db
// because the child may also have gaps, and we need to get over it
r.gap.from = r.last_request.before;
}
// we want all the data up to now
r.gap.to = r.local_db.wall_clock_time;
// The gap is now r.gap.from -> r.gap.to
if (unlikely(!rrdhost_option_check(host, RRDHOST_OPTION_REPLICATION)))
return send_replay_chart_cmd(&r, "empty replication request, replication is disabled", false);
if (unlikely(!rrdset_number_of_dimensions(st)))
return send_replay_chart_cmd(&r, "empty replication request, chart has no dimensions", false);
if (unlikely(!r.child_db.first_entry_t || !r.child_db.last_entry_t))
return send_replay_chart_cmd(&r, "empty replication request, child has no stored data", false);
if (unlikely(r.child_db.first_entry_t < 0 || r.child_db.last_entry_t < 0))
return send_replay_chart_cmd(&r, "empty replication request, child db timestamps are invalid", true);
if (unlikely(r.child_db.first_entry_t > r.child_db.wall_clock_time))
return send_replay_chart_cmd(&r, "empty replication request, child db first entry is after its wall clock time", true);
if (unlikely(r.child_db.first_entry_t > r.child_db.last_entry_t))
return send_replay_chart_cmd(&r, "empty replication request, child timings are invalid (first entry > last entry)", true);
if (unlikely(r.local_db.last_entry_t > r.child_db.last_entry_t))
return send_replay_chart_cmd(&r, "empty replication request, local last entry is later than the child one", false);
// let's find what the child can provide to fill that gap
if(r.child_db.first_entry_t > r.gap.from)
// the child does not have all the data - let's get what it has
r.wanted.after = r.child_db.first_entry_t;
else
// ok, the child can fill the entire gap we have
r.wanted.after = r.gap.from;
if(r.gap.to - r.wanted.after > host->rrdpush_replication_step)
// the duration is too big for one request - let's take the first step
r.wanted.before = r.wanted.after + host->rrdpush_replication_step;
else
// wow, we can do it in one request
r.wanted.before = r.gap.to;
// don't ask from the child more than it has
if(r.wanted.before > r.child_db.last_entry_t)
r.wanted.before = r.child_db.last_entry_t;
if(r.wanted.after > r.wanted.before) {
r.wanted.after = 0;
r.wanted.before = 0;
r.wanted.start_streaming = true;
return send_replay_chart_cmd(&r, "empty replication request, wanted after computed bigger than wanted before", true);
}
// the child should start streaming immediately if the wanted duration is small, or we reached the last entry of the child
r.wanted.start_streaming = (r.local_db.wall_clock_time - r.wanted.after <= host->rrdpush_replication_step ||
r.wanted.before >= r.child_db.last_entry_t ||
r.wanted.before >= r.child_db.wall_clock_time ||
r.wanted.before >= r.local_db.wall_clock_time);
// the wanted timeframe is now r.wanted.after -> r.wanted.before
// send it
return send_replay_chart_cmd(&r, "OK", false);
}
// ----------------------------------------------------------------------------
// replication thread
// replication request in sender DICTIONARY
// used for de-duplicating the requests
struct replication_request {
struct sender_state *sender; // the sender we should put the reply at
STRING *chart_id; // the chart of the request
time_t after; // the start time of the query (maybe zero) key for sorting (JudyL)
time_t before; // the end time of the query (maybe zero)
usec_t sender_last_flush_ut; // the timestamp of the sender, at the time we indexed this request
Word_t unique_id; // auto-increment, later requests have bigger
bool start_streaming; // true, when the parent wants to send the rest of the data (before is overwritten) and enable normal streaming
bool indexed_in_judy; // true when the request is indexed in judy
bool not_indexed_buffer_full; // true when the request is not indexed because the sender is full
bool not_indexed_preprocessing; // true when the request is not indexed, but it is pending in preprocessing
// prepare ahead members - preprocessing
bool found; // used as a result boolean for the find call
bool executed; // used to detect if we have skipped requests while preprocessing
RRDSET *st; // caching of the chart during preprocessing
struct replication_query *q; // the preprocessing query initialization
};
// replication sort entry in JudyL array
// used for sorting all requests, across all nodes
struct replication_sort_entry {
struct replication_request *rq;
size_t unique_id; // used as a key to identify the sort entry - we never access its contents
};
#define MAX_REPLICATION_THREADS 20 // + 1 for the main thread
// the global variables for the replication thread
static struct replication_thread {
ARAL *aral_rse;
SPINLOCK spinlock;
struct {
size_t pending; // number of requests pending in the queue
// statistics
size_t added; // number of requests added to the queue
size_t removed; // number of requests removed from the queue
size_t pending_no_room; // number of requests skipped, because the sender has no room for responses
size_t senders_full; // number of times a sender reset our last position in the queue
size_t sender_resets; // number of times a sender reset our last position in the queue
time_t first_time_t; // the minimum 'after' we encountered
struct {
Word_t after;
Word_t unique_id;
Pvoid_t JudyL_array;
} queue;
} unsafe; // protected from replication_recursive_lock()
struct {
Word_t unique_id; // the last unique id we gave to a request (auto-increment, starting from 1)
size_t executed; // the number of replication requests executed
size_t latest_first_time; // the 'after' timestamp of the last request we executed
size_t memory; // the total memory allocated by replication
} atomic; // access should be with atomic operations
struct {
size_t last_executed; // caching of the atomic.executed to report number of requests executed since last time
netdata_thread_t **threads_ptrs;
size_t threads;
} main_thread; // access is allowed only by the main thread
} replication_globals = {
.aral_rse = NULL,
.spinlock = NETDATA_SPINLOCK_INITIALIZER,
.unsafe = {
.pending = 0,
.added = 0,
.removed = 0,
.pending_no_room = 0,
.sender_resets = 0,
.senders_full = 0,
.first_time_t = 0,
.queue = {
.after = 0,
.unique_id = 0,
.JudyL_array = NULL,
},
},
.atomic = {
.unique_id = 0,
.executed = 0,
.latest_first_time = 0,
.memory = 0,
},
.main_thread = {
.last_executed = 0,
.threads = 0,
.threads_ptrs = NULL,
},
};
size_t replication_allocated_memory(void) {
return __atomic_load_n(&replication_globals.atomic.memory, __ATOMIC_RELAXED);
}
#define replication_set_latest_first_time(t) __atomic_store_n(&replication_globals.atomic.latest_first_time, t, __ATOMIC_RELAXED)
#define replication_get_latest_first_time() __atomic_load_n(&replication_globals.atomic.latest_first_time, __ATOMIC_RELAXED)
static inline bool replication_recursive_lock_mode(char mode) {
static __thread int recursions = 0;
if(mode == 'L') { // (L)ock
if(++recursions == 1)
spinlock_lock(&replication_globals.spinlock);
}
else if(mode == 'U') { // (U)nlock
if(--recursions == 0)
spinlock_unlock(&replication_globals.spinlock);
}
else if(mode == 'C') { // (C)heck
if(recursions > 0)
return true;
else
return false;
}
else
fatal("REPLICATION: unknown lock mode '%c'", mode);
#ifdef NETDATA_INTERNAL_CHECKS
if(recursions < 0)
fatal("REPLICATION: recursions is %d", recursions);
#endif
return true;
}
#define replication_recursive_lock() replication_recursive_lock_mode('L')
#define replication_recursive_unlock() replication_recursive_lock_mode('U')
#define fatal_when_replication_is_not_locked_for_me() do { \
if(!replication_recursive_lock_mode('C')) \
fatal("REPLICATION: reached %s, but replication is not locked by this thread.", __FUNCTION__); \
} while(0)
void replication_set_next_point_in_time(time_t after, size_t unique_id) {
replication_recursive_lock();
replication_globals.unsafe.queue.after = after;
replication_globals.unsafe.queue.unique_id = unique_id;
replication_recursive_unlock();
}
// ----------------------------------------------------------------------------
// replication sort entry management
static inline struct replication_sort_entry *replication_sort_entry_create(struct replication_request *rq) {
struct replication_sort_entry *rse = aral_mallocz(replication_globals.aral_rse);
__atomic_add_fetch(&replication_globals.atomic.memory, sizeof(struct replication_sort_entry), __ATOMIC_RELAXED);
rrdpush_sender_pending_replication_requests_plus_one(rq->sender);
// copy the request
rse->rq = rq;
rse->unique_id = __atomic_add_fetch(&replication_globals.atomic.unique_id, 1, __ATOMIC_SEQ_CST);
// save the unique id into the request, to be able to delete it later
rq->unique_id = rse->unique_id;
rq->indexed_in_judy = false;
rq->not_indexed_buffer_full = false;
rq->not_indexed_preprocessing = false;
return rse;
}
static void replication_sort_entry_destroy(struct replication_sort_entry *rse) {
aral_freez(replication_globals.aral_rse, rse);
__atomic_sub_fetch(&replication_globals.atomic.memory, sizeof(struct replication_sort_entry), __ATOMIC_RELAXED);
}
static void replication_sort_entry_add(struct replication_request *rq) {
if(unlikely(rrdpush_sender_replication_buffer_full_get(rq->sender))) {
rq->indexed_in_judy = false;
rq->not_indexed_buffer_full = true;
rq->not_indexed_preprocessing = false;
replication_recursive_lock();
replication_globals.unsafe.pending_no_room++;
replication_recursive_unlock();
return;
}
// cache this, because it will be changed
bool decrement_no_room = rq->not_indexed_buffer_full;
struct replication_sort_entry *rse = replication_sort_entry_create(rq);
replication_recursive_lock();
if(decrement_no_room)
replication_globals.unsafe.pending_no_room--;
// if(rq->after < (time_t)replication_globals.protected.queue.after &&
// rq->sender->buffer_used_percentage <= MAX_SENDER_BUFFER_PERCENTAGE_ALLOWED &&
// !replication_globals.protected.skipped_no_room_since_last_reset) {
//
// // make it find this request first
// replication_set_next_point_in_time(rq->after, rq->unique_id);
// }
replication_globals.unsafe.added++;
replication_globals.unsafe.pending++;
Pvoid_t *inner_judy_ptr;
// find the outer judy entry, using after as key
size_t mem_before_outer_judyl = JudyLMemUsed(replication_globals.unsafe.queue.JudyL_array);
inner_judy_ptr = JudyLIns(&replication_globals.unsafe.queue.JudyL_array, (Word_t) rq->after, PJE0);
size_t mem_after_outer_judyl = JudyLMemUsed(replication_globals.unsafe.queue.JudyL_array);
if(unlikely(!inner_judy_ptr || inner_judy_ptr == PJERR))
fatal("REPLICATION: corrupted outer judyL");
// add it to the inner judy, using unique_id as key
size_t mem_before_inner_judyl = JudyLMemUsed(*inner_judy_ptr);
Pvoid_t *item = JudyLIns(inner_judy_ptr, rq->unique_id, PJE0);
size_t mem_after_inner_judyl = JudyLMemUsed(*inner_judy_ptr);
if(unlikely(!item || item == PJERR))
fatal("REPLICATION: corrupted inner judyL");
*item = rse;
rq->indexed_in_judy = true;
rq->not_indexed_buffer_full = false;
rq->not_indexed_preprocessing = false;
if(!replication_globals.unsafe.first_time_t || rq->after < replication_globals.unsafe.first_time_t)
replication_globals.unsafe.first_time_t = rq->after;
replication_recursive_unlock();
__atomic_add_fetch(&replication_globals.atomic.memory, (mem_after_inner_judyl - mem_before_inner_judyl) + (mem_after_outer_judyl - mem_before_outer_judyl), __ATOMIC_RELAXED);
}
static bool replication_sort_entry_unlink_and_free_unsafe(struct replication_sort_entry *rse, Pvoid_t **inner_judy_ppptr, bool preprocessing) {
fatal_when_replication_is_not_locked_for_me();
bool inner_judy_deleted = false;
replication_globals.unsafe.removed++;
replication_globals.unsafe.pending--;
rrdpush_sender_pending_replication_requests_minus_one(rse->rq->sender);
rse->rq->indexed_in_judy = false;
rse->rq->not_indexed_preprocessing = preprocessing;
size_t memory_saved = 0;
// delete it from the inner judy
size_t mem_before_inner_judyl = JudyLMemUsed(**inner_judy_ppptr);
JudyLDel(*inner_judy_ppptr, rse->rq->unique_id, PJE0);
size_t mem_after_inner_judyl = JudyLMemUsed(**inner_judy_ppptr);
memory_saved = mem_before_inner_judyl - mem_after_inner_judyl;
// if no items left, delete it from the outer judy
if(**inner_judy_ppptr == NULL) {
size_t mem_before_outer_judyl = JudyLMemUsed(replication_globals.unsafe.queue.JudyL_array);
JudyLDel(&replication_globals.unsafe.queue.JudyL_array, rse->rq->after, PJE0);
size_t mem_after_outer_judyl = JudyLMemUsed(replication_globals.unsafe.queue.JudyL_array);
memory_saved += mem_before_outer_judyl - mem_after_outer_judyl;
inner_judy_deleted = true;
}
// free memory
replication_sort_entry_destroy(rse);
__atomic_sub_fetch(&replication_globals.atomic.memory, memory_saved, __ATOMIC_RELAXED);
return inner_judy_deleted;
}
static void replication_sort_entry_del(struct replication_request *rq, bool buffer_full) {
Pvoid_t *inner_judy_pptr;
struct replication_sort_entry *rse_to_delete = NULL;
replication_recursive_lock();
if(rq->indexed_in_judy) {
inner_judy_pptr = JudyLGet(replication_globals.unsafe.queue.JudyL_array, rq->after, PJE0);
if (inner_judy_pptr) {
Pvoid_t *our_item_pptr = JudyLGet(*inner_judy_pptr, rq->unique_id, PJE0);
if (our_item_pptr) {
rse_to_delete = *our_item_pptr;
replication_sort_entry_unlink_and_free_unsafe(rse_to_delete, &inner_judy_pptr, false);
if(buffer_full) {
replication_globals.unsafe.pending_no_room++;
rq->not_indexed_buffer_full = true;
}
}
}
if (!rse_to_delete)
fatal("REPLAY: 'host:%s/chart:%s' Cannot find sort entry to delete for time %ld.",
rrdhost_hostname(rq->sender->host), string2str(rq->chart_id), rq->after);
}
replication_recursive_unlock();
}
static struct replication_request replication_request_get_first_available() {
Pvoid_t *inner_judy_pptr;
replication_recursive_lock();
struct replication_request rq_to_return = (struct replication_request){ .found = false };
if(unlikely(!replication_globals.unsafe.queue.after || !replication_globals.unsafe.queue.unique_id)) {
replication_globals.unsafe.queue.after = 0;
replication_globals.unsafe.queue.unique_id = 0;
}
Word_t started_after = replication_globals.unsafe.queue.after;
size_t round = 0;
while(!rq_to_return.found) {
round++;
if(round > 2)
break;
if(round == 2) {
if(started_after == 0)
break;
replication_globals.unsafe.queue.after = 0;
replication_globals.unsafe.queue.unique_id = 0;
}
bool find_same_after = true;
while (!rq_to_return.found && (inner_judy_pptr = JudyLFirstThenNext(replication_globals.unsafe.queue.JudyL_array, &replication_globals.unsafe.queue.after, &find_same_after))) {
Pvoid_t *our_item_pptr;
if(unlikely(round == 2 && replication_globals.unsafe.queue.after > started_after))
break;
while (!rq_to_return.found && (our_item_pptr = JudyLNext(*inner_judy_pptr, &replication_globals.unsafe.queue.unique_id, PJE0))) {
struct replication_sort_entry *rse = *our_item_pptr;
struct replication_request *rq = rse->rq;
// copy the request to return it
rq_to_return = *rq;
rq_to_return.chart_id = string_dup(rq_to_return.chart_id);
// set the return result to found
rq_to_return.found = true;
if (replication_sort_entry_unlink_and_free_unsafe(rse, &inner_judy_pptr, true))
// we removed the item from the outer JudyL
break;
}
// prepare for the next iteration on the outer loop
replication_globals.unsafe.queue.unique_id = 0;
}
}
replication_recursive_unlock();
return rq_to_return;
}
// ----------------------------------------------------------------------------
// replication request management
static void replication_request_react_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value __maybe_unused, void *sender_state __maybe_unused) {
struct sender_state *s = sender_state; (void)s;
struct replication_request *rq = value;
// IMPORTANT:
// We use the react instead of the insert callback
// because we want the item to be atomically visible
// to our replication thread, immediately after.
// If we put this at the insert callback, the item is not guaranteed
// to be atomically visible to others, so the replication thread
// may see the replication sort entry, but fail to find the dictionary item
// related to it.
replication_sort_entry_add(rq);
// this request is about a unique chart for this sender
rrdpush_sender_replicating_charts_plus_one(s);
}
static bool replication_request_conflict_callback(const DICTIONARY_ITEM *item __maybe_unused, void *old_value, void *new_value, void *sender_state) {
struct sender_state *s = sender_state; (void)s;
struct replication_request *rq = old_value; (void)rq;
struct replication_request *rq_new = new_value;
replication_recursive_lock();
if(!rq->indexed_in_judy && rq->not_indexed_buffer_full && !rq->not_indexed_preprocessing) {
// we can replace this command
internal_error(
true,
"STREAM %s [send to %s]: REPLAY: 'host:%s/chart:%s' replacing duplicate replication command received (existing from %llu to %llu [%s], new from %llu to %llu [%s])",
rrdhost_hostname(s->host), s->connected_to, rrdhost_hostname(s->host), dictionary_acquired_item_name(item),
(unsigned long long)rq->after, (unsigned long long)rq->before, rq->start_streaming ? "true" : "false",
(unsigned long long)rq_new->after, (unsigned long long)rq_new->before, rq_new->start_streaming ? "true" : "false");
rq->after = rq_new->after;
rq->before = rq_new->before;
rq->start_streaming = rq_new->start_streaming;
}
else if(!rq->indexed_in_judy && !rq->not_indexed_preprocessing) {
replication_sort_entry_add(rq);
internal_error(
true,
"STREAM %s [send to %s]: REPLAY: 'host:%s/chart:%s' adding duplicate replication command received (existing from %llu to %llu [%s], new from %llu to %llu [%s])",
rrdhost_hostname(s->host), s->connected_to, rrdhost_hostname(s->host), dictionary_acquired_item_name(item),
(unsigned long long)rq->after, (unsigned long long)rq->before, rq->start_streaming ? "true" : "false",
(unsigned long long)rq_new->after, (unsigned long long)rq_new->before, rq_new->start_streaming ? "true" : "false");
}
else {
internal_error(
true,
"STREAM %s [send to %s]: REPLAY: 'host:%s/chart:%s' ignoring duplicate replication command received (existing from %llu to %llu [%s], new from %llu to %llu [%s])",
rrdhost_hostname(s->host), s->connected_to, rrdhost_hostname(s->host),
dictionary_acquired_item_name(item),
(unsigned long long) rq->after, (unsigned long long) rq->before, rq->start_streaming ? "true" : "false",
(unsigned long long) rq_new->after, (unsigned long long) rq_new->before, rq_new->start_streaming ? "true" : "false");
}
replication_recursive_unlock();
string_freez(rq_new->chart_id);
return false;
}
static void replication_request_delete_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *sender_state __maybe_unused) {
struct replication_request *rq = value;
// this request is about a unique chart for this sender
rrdpush_sender_replicating_charts_minus_one(rq->sender);
if(rq->indexed_in_judy)
replication_sort_entry_del(rq, false);
else if(rq->not_indexed_buffer_full) {
replication_recursive_lock();
replication_globals.unsafe.pending_no_room--;
replication_recursive_unlock();
}
string_freez(rq->chart_id);
}
static bool sender_is_still_connected_for_this_request(struct replication_request *rq) {
return rq->sender_last_flush_ut == rrdpush_sender_get_flush_time(rq->sender);
};
static bool replication_execute_request(struct replication_request *rq, bool workers) {
bool ret = false;
if(!rq->st) {
if(likely(workers))
worker_is_busy(WORKER_JOB_FIND_CHART);
rq->st = rrdset_find(rq->sender->host, string2str(rq->chart_id));
}
if(!rq->st) {
internal_error(true, "REPLAY ERROR: 'host:%s/chart:%s' not found",
rrdhost_hostname(rq->sender->host), string2str(rq->chart_id));
goto cleanup;
}
netdata_thread_disable_cancelability();
if(!rq->q) {
if(likely(workers))
worker_is_busy(WORKER_JOB_PREPARE_QUERY);
rq->q = replication_response_prepare(
rq->st,
rq->start_streaming,
rq->after,
rq->before,
rq->sender->capabilities);
}
if(likely(workers))
worker_is_busy(WORKER_JOB_QUERYING);
// send the replication data
rq->q->rq = rq;
replication_response_execute_and_finalize(
rq->q, (size_t)((unsigned long long)rq->sender->host->sender->buffer->max_size * MAX_REPLICATION_MESSAGE_PERCENT_SENDER_BUFFER / 100ULL));
rq->q = NULL;
netdata_thread_enable_cancelability();
__atomic_add_fetch(&replication_globals.atomic.executed, 1, __ATOMIC_RELAXED);
ret = true;
cleanup:
if(rq->q) {
replication_response_cancel_and_finalize(rq->q);
rq->q = NULL;
}
string_freez(rq->chart_id);
worker_is_idle();
return ret;
}
// ----------------------------------------------------------------------------
// public API
void replication_add_request(struct sender_state *sender, const char *chart_id, time_t after, time_t before, bool start_streaming) {
struct replication_request rq = {
.sender = sender,
.chart_id = string_strdupz(chart_id),
.after = after,
.before = before,
.start_streaming = start_streaming,
.sender_last_flush_ut = rrdpush_sender_get_flush_time(sender),
.indexed_in_judy = false,
.not_indexed_buffer_full = false,
.not_indexed_preprocessing = false,
};
if(!sender->replication.oldest_request_after_t || rq.after < sender->replication.oldest_request_after_t)
sender->replication.oldest_request_after_t = rq.after;
if(start_streaming && rrdpush_sender_get_buffer_used_percent(sender) <= STREAMING_START_MAX_SENDER_BUFFER_PERCENTAGE_ALLOWED)
replication_execute_request(&rq, false);
else
dictionary_set(sender->replication.requests, chart_id, &rq, sizeof(struct replication_request));
}
void replication_sender_delete_pending_requests(struct sender_state *sender) {
// allow the dictionary destructor to go faster on locks
dictionary_flush(sender->replication.requests);
}
void replication_init_sender(struct sender_state *sender) {
sender->replication.requests = dictionary_create_advanced(DICT_OPTION_DONT_OVERWRITE_VALUE | DICT_OPTION_FIXED_SIZE,
NULL, sizeof(struct replication_request));
dictionary_register_react_callback(sender->replication.requests, replication_request_react_callback, sender);
dictionary_register_conflict_callback(sender->replication.requests, replication_request_conflict_callback, sender);
dictionary_register_delete_callback(sender->replication.requests, replication_request_delete_callback, sender);
}
void replication_cleanup_sender(struct sender_state *sender) {
// allow the dictionary destructor to go faster on locks
replication_recursive_lock();
dictionary_destroy(sender->replication.requests);
replication_recursive_unlock();
}
void replication_recalculate_buffer_used_ratio_unsafe(struct sender_state *s) {
size_t available = cbuffer_available_size_unsafe(s->host->sender->buffer);
size_t percentage = (s->buffer->max_size - available) * 100 / s->buffer->max_size;
if(unlikely(percentage > MAX_SENDER_BUFFER_PERCENTAGE_ALLOWED && !rrdpush_sender_replication_buffer_full_get(s))) {
rrdpush_sender_replication_buffer_full_set(s, true);
struct replication_request *rq;
dfe_start_read(s->replication.requests, rq) {
if(rq->indexed_in_judy)
replication_sort_entry_del(rq, true);
}
dfe_done(rq);
replication_recursive_lock();
replication_globals.unsafe.senders_full++;
replication_recursive_unlock();
}
else if(unlikely(percentage < MIN_SENDER_BUFFER_PERCENTAGE_ALLOWED && rrdpush_sender_replication_buffer_full_get(s))) {
rrdpush_sender_replication_buffer_full_set(s, false);
struct replication_request *rq;
dfe_start_read(s->replication.requests, rq) {
if(!rq->indexed_in_judy && (rq->not_indexed_buffer_full || rq->not_indexed_preprocessing))
replication_sort_entry_add(rq);
}
dfe_done(rq);
replication_recursive_lock();
replication_globals.unsafe.senders_full--;
replication_globals.unsafe.sender_resets++;
// replication_set_next_point_in_time(0, 0);
replication_recursive_unlock();
}
rrdpush_sender_set_buffer_used_percent(s, percentage);
}
// ----------------------------------------------------------------------------
// replication thread
static size_t verify_host_charts_are_streaming_now(RRDHOST *host) {
internal_error(
host->sender &&
!rrdpush_sender_pending_replication_requests(host->sender) &&
dictionary_entries(host->sender->replication.requests) != 0,
"REPLICATION SUMMARY: 'host:%s' reports %zu pending replication requests, but its chart replication index says there are %zu charts pending replication",
rrdhost_hostname(host),
rrdpush_sender_pending_replication_requests(host->sender),
dictionary_entries(host->sender->replication.requests)
);
size_t ok = 0;
size_t errors = 0;
RRDSET *st;
rrdset_foreach_read(st, host) {
RRDSET_FLAGS flags = rrdset_flag_check(st, RRDSET_FLAG_SENDER_REPLICATION_IN_PROGRESS | RRDSET_FLAG_SENDER_REPLICATION_FINISHED);
bool is_error = false;
if(!flags) {
internal_error(
true,
"REPLICATION SUMMARY: 'host:%s/chart:%s' is neither IN PROGRESS nor FINISHED",
rrdhost_hostname(host), rrdset_id(st)
);
is_error = true;
}
if(!(flags & RRDSET_FLAG_SENDER_REPLICATION_FINISHED) || (flags & RRDSET_FLAG_SENDER_REPLICATION_IN_PROGRESS)) {
internal_error(
true,
"REPLICATION SUMMARY: 'host:%s/chart:%s' is IN PROGRESS although replication is finished",
rrdhost_hostname(host), rrdset_id(st)
);
is_error = true;
}
if(is_error)
errors++;
else
ok++;
}
rrdset_foreach_done(st);
internal_error(errors,
"REPLICATION SUMMARY: 'host:%s' finished replicating %zu charts, but %zu charts are still in progress although replication finished",
rrdhost_hostname(host), ok, errors);
return errors;
}
static void verify_all_hosts_charts_are_streaming_now(void) {
worker_is_busy(WORKER_JOB_CHECK_CONSISTENCY);
size_t errors = 0;
RRDHOST *host;
dfe_start_read(rrdhost_root_index, host)
errors += verify_host_charts_are_streaming_now(host);
dfe_done(host);
size_t executed = __atomic_load_n(&replication_globals.atomic.executed, __ATOMIC_RELAXED);
netdata_log_info("REPLICATION SUMMARY: finished, executed %zu replication requests, %zu charts pending replication",
executed - replication_globals.main_thread.last_executed, errors);
replication_globals.main_thread.last_executed = executed;
}
static void replication_initialize_workers(bool master) {
worker_register("REPLICATION");
worker_register_job_name(WORKER_JOB_FIND_NEXT, "find next");
worker_register_job_name(WORKER_JOB_QUERYING, "querying");
worker_register_job_name(WORKER_JOB_DELETE_ENTRY, "dict delete");
worker_register_job_name(WORKER_JOB_FIND_CHART, "find chart");
worker_register_job_name(WORKER_JOB_PREPARE_QUERY, "prepare query");
worker_register_job_name(WORKER_JOB_CHECK_CONSISTENCY, "check consistency");
worker_register_job_name(WORKER_JOB_BUFFER_COMMIT, "commit");
worker_register_job_name(WORKER_JOB_CLEANUP, "cleanup");
worker_register_job_name(WORKER_JOB_WAIT, "wait");
if(master) {
worker_register_job_name(WORKER_JOB_STATISTICS, "statistics");
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_PENDING_REQUESTS, "pending requests", "requests", WORKER_METRIC_ABSOLUTE);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_SKIPPED_NO_ROOM, "no room requests", "requests", WORKER_METRIC_ABSOLUTE);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_COMPLETION, "completion", "%", WORKER_METRIC_ABSOLUTE);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_ADDED, "added requests", "requests/s", WORKER_METRIC_INCREMENTAL_TOTAL);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_DONE, "finished requests", "requests/s", WORKER_METRIC_INCREMENTAL_TOTAL);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_SENDER_RESETS, "sender resets", "resets/s", WORKER_METRIC_INCREMENTAL_TOTAL);
worker_register_job_custom_metric(WORKER_JOB_CUSTOM_METRIC_SENDER_FULL, "senders full", "senders", WORKER_METRIC_ABSOLUTE);
}
}
#define REQUEST_OK (0)
#define REQUEST_QUEUE_EMPTY (-1)
#define REQUEST_CHART_NOT_FOUND (-2)
static __thread struct replication_thread_pipeline {
int max_requests_ahead;
struct replication_request *rqs;
int rqs_last_executed, rqs_last_prepared;
size_t queue_rounds;
} rtp = {
.max_requests_ahead = 0,
.rqs = NULL,
.rqs_last_executed = 0,
.rqs_last_prepared = 0,
.queue_rounds = 0,
};
static void replication_pipeline_cancel_and_cleanup(void) {
if(!rtp.rqs)
return;
struct replication_request *rq;
size_t cancelled = 0;
do {
if (++rtp.rqs_last_executed >= rtp.max_requests_ahead)
rtp.rqs_last_executed = 0;
rq = &rtp.rqs[rtp.rqs_last_executed];
if (rq->q) {
internal_fatal(rq->executed, "REPLAY FATAL: query has already been executed!");
internal_fatal(!rq->found, "REPLAY FATAL: orphan q in rq");
replication_response_cancel_and_finalize(rq->q);
rq->q = NULL;
cancelled++;
}
rq->executed = true;
rq->found = false;
} while (rtp.rqs_last_executed != rtp.rqs_last_prepared);
internal_error(true, "REPLICATION: cancelled %zu inflight queries", cancelled);
freez(rtp.rqs);
rtp.rqs = NULL;
rtp.max_requests_ahead = 0;
rtp.rqs_last_executed = 0;
rtp.rqs_last_prepared = 0;
rtp.queue_rounds = 0;
}
static int replication_pipeline_execute_next(void) {
struct replication_request *rq;
if(unlikely(!rtp.rqs)) {
rtp.max_requests_ahead = (int)get_netdata_cpus() / 2;
if(rtp.max_requests_ahead > libuv_worker_threads * 2)
rtp.max_requests_ahead = libuv_worker_threads * 2;
if(rtp.max_requests_ahead < 2)
rtp.max_requests_ahead = 2;
rtp.rqs = callocz(rtp.max_requests_ahead, sizeof(struct replication_request));
__atomic_add_fetch(&replication_buffers_allocated, rtp.max_requests_ahead * sizeof(struct replication_request), __ATOMIC_RELAXED);
}
// fill the queue
do {
if(++rtp.rqs_last_prepared >= rtp.max_requests_ahead) {
rtp.rqs_last_prepared = 0;
rtp.queue_rounds++;
}
internal_fatal(rtp.rqs[rtp.rqs_last_prepared].q,
"REPLAY FATAL: slot is used by query that has not been executed!");
worker_is_busy(WORKER_JOB_FIND_NEXT);
rtp.rqs[rtp.rqs_last_prepared] = replication_request_get_first_available();
rq = &rtp.rqs[rtp.rqs_last_prepared];
if(rq->found) {
if (!rq->st) {
worker_is_busy(WORKER_JOB_FIND_CHART);
rq->st = rrdset_find(rq->sender->host, string2str(rq->chart_id));
}
if (rq->st && !rq->q) {
worker_is_busy(WORKER_JOB_PREPARE_QUERY);
rq->q = replication_response_prepare(
rq->st,
rq->start_streaming,
rq->after,
rq->before,
rq->sender->capabilities);
}
rq->executed = false;
}
} while(rq->found && rtp.rqs_last_prepared != rtp.rqs_last_executed);
// pick the first usable
do {
if (++rtp.rqs_last_executed >= rtp.max_requests_ahead)
rtp.rqs_last_executed = 0;
rq = &rtp.rqs[rtp.rqs_last_executed];
if(rq->found) {
internal_fatal(rq->executed, "REPLAY FATAL: query has already been executed!");
if (rq->sender_last_flush_ut != rrdpush_sender_get_flush_time(rq->sender)) {
// the sender has reconnected since this request was queued,
// we can safely throw it away, since the parent will resend it
replication_response_cancel_and_finalize(rq->q);
rq->executed = true;
rq->found = false;
rq->q = NULL;
}
else if (rrdpush_sender_replication_buffer_full_get(rq->sender)) {
// the sender buffer is full, so we can ignore this request,
// it has already been marked as 'preprocessed' in the dictionary,
// and the sender will put it back in when there is
// enough room in the buffer for processing replication requests
replication_response_cancel_and_finalize(rq->q);
rq->executed = true;
rq->found = false;
rq->q = NULL;
}
else {
// we can execute this,
// delete it from the dictionary
worker_is_busy(WORKER_JOB_DELETE_ENTRY);
dictionary_del(rq->sender->replication.requests, string2str(rq->chart_id));
}
}
else
internal_fatal(rq->q, "REPLAY FATAL: slot status says slot is empty, but it has a pending query!");
} while(!rq->found && rtp.rqs_last_executed != rtp.rqs_last_prepared);
if(unlikely(!rq->found)) {
worker_is_idle();
return REQUEST_QUEUE_EMPTY;
}
replication_set_latest_first_time(rq->after);
bool chart_found = replication_execute_request(rq, true);
rq->executed = true;
rq->found = false;
rq->q = NULL;
if(unlikely(!chart_found)) {
worker_is_idle();
return REQUEST_CHART_NOT_FOUND;
}
worker_is_idle();
return REQUEST_OK;
}
static void replication_worker_cleanup(void *ptr __maybe_unused) {
replication_pipeline_cancel_and_cleanup();
worker_unregister();
}
static void *replication_worker_thread(void *ptr) {
replication_initialize_workers(false);
netdata_thread_cleanup_push(replication_worker_cleanup, ptr);
while(service_running(SERVICE_REPLICATION)) {
if(unlikely(replication_pipeline_execute_next() == REQUEST_QUEUE_EMPTY)) {
sender_thread_buffer_free();
worker_is_busy(WORKER_JOB_WAIT);
worker_is_idle();
sleep_usec(1 * USEC_PER_SEC);
}
}
netdata_thread_cleanup_pop(1);
return NULL;
}
static void replication_main_cleanup(void *ptr) {
struct netdata_static_thread *static_thread = (struct netdata_static_thread *)ptr;
static_thread->enabled = NETDATA_MAIN_THREAD_EXITING;
replication_pipeline_cancel_and_cleanup();
int threads = (int)replication_globals.main_thread.threads;
for(int i = 0; i < threads ;i++) {
netdata_thread_join(*replication_globals.main_thread.threads_ptrs[i], NULL);
freez(replication_globals.main_thread.threads_ptrs[i]);
__atomic_sub_fetch(&replication_buffers_allocated, sizeof(netdata_thread_t), __ATOMIC_RELAXED);
}
freez(replication_globals.main_thread.threads_ptrs);
replication_globals.main_thread.threads_ptrs = NULL;
__atomic_sub_fetch(&replication_buffers_allocated, threads * sizeof(netdata_thread_t), __ATOMIC_RELAXED);
aral_destroy(replication_globals.aral_rse);
replication_globals.aral_rse = NULL;
// custom code
worker_unregister();
static_thread->enabled = NETDATA_MAIN_THREAD_EXITED;
}
void replication_initialize(void) {
replication_globals.aral_rse = aral_create("rse", sizeof(struct replication_sort_entry),
0, 65536, aral_by_size_statistics(),
NULL, NULL, false, false);
}
void *replication_thread_main(void *ptr __maybe_unused) {
replication_initialize_workers(true);
int threads = config_get_number(CONFIG_SECTION_DB, "replication threads", 1);
if(threads < 1 || threads > MAX_REPLICATION_THREADS) {
netdata_log_error("replication threads given %d is invalid, resetting to 1", threads);
threads = 1;
}
if(--threads) {
replication_globals.main_thread.threads = threads;
replication_globals.main_thread.threads_ptrs = mallocz(threads * sizeof(netdata_thread_t *));
__atomic_add_fetch(&replication_buffers_allocated, threads * sizeof(netdata_thread_t), __ATOMIC_RELAXED);
for(int i = 0; i < threads ;i++) {
char tag[NETDATA_THREAD_TAG_MAX + 1];
snprintfz(tag, NETDATA_THREAD_TAG_MAX, "REPLAY[%d]", i + 2);
replication_globals.main_thread.threads_ptrs[i] = mallocz(sizeof(netdata_thread_t));
__atomic_add_fetch(&replication_buffers_allocated, sizeof(netdata_thread_t), __ATOMIC_RELAXED);
netdata_thread_create(replication_globals.main_thread.threads_ptrs[i], tag,
NETDATA_THREAD_OPTION_JOINABLE, replication_worker_thread, NULL);
}
}
netdata_thread_cleanup_push(replication_main_cleanup, ptr);
// start from 100% completed
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_COMPLETION, 100.0);
long run_verification_countdown = LONG_MAX; // LONG_MAX to prevent an initial verification when no replication ever took place
bool slow = true; // control the time we sleep - it has to start with true!
usec_t last_now_mono_ut = now_monotonic_usec();
time_t replication_reset_next_point_in_time_countdown = SECONDS_TO_RESET_POINT_IN_TIME; // restart from the beginning every 10 seconds
size_t last_executed = 0;
size_t last_sender_resets = 0;
while(service_running(SERVICE_REPLICATION)) {
// statistics
usec_t now_mono_ut = now_monotonic_usec();
if(unlikely(now_mono_ut - last_now_mono_ut > default_rrd_update_every * USEC_PER_SEC)) {
last_now_mono_ut = now_mono_ut;
worker_is_busy(WORKER_JOB_STATISTICS);
replication_recursive_lock();
size_t current_executed = __atomic_load_n(&replication_globals.atomic.executed, __ATOMIC_RELAXED);
if(last_executed != current_executed) {
run_verification_countdown = ITERATIONS_IDLE_WITHOUT_PENDING_TO_RUN_SENDER_VERIFICATION;
last_executed = current_executed;
slow = false;
}
if(replication_reset_next_point_in_time_countdown-- == 0) {
// once per second, make it scan all the pending requests next time
replication_set_next_point_in_time(0, 0);
// replication_globals.protected.skipped_no_room_since_last_reset = 0;
replication_reset_next_point_in_time_countdown = SECONDS_TO_RESET_POINT_IN_TIME;
}
if(--run_verification_countdown == 0) {
if (!replication_globals.unsafe.pending && !replication_globals.unsafe.pending_no_room) {
// reset the statistics about completion percentage
replication_globals.unsafe.first_time_t = 0;
replication_set_latest_first_time(0);
verify_all_hosts_charts_are_streaming_now();
run_verification_countdown = LONG_MAX;
slow = true;
}
else
run_verification_countdown = ITERATIONS_IDLE_WITHOUT_PENDING_TO_RUN_SENDER_VERIFICATION;
}
time_t latest_first_time_t = replication_get_latest_first_time();
if(latest_first_time_t && replication_globals.unsafe.pending) {
// completion percentage statistics
time_t now = now_realtime_sec();
time_t total = now - replication_globals.unsafe.first_time_t;
time_t done = latest_first_time_t - replication_globals.unsafe.first_time_t;
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_COMPLETION,
(NETDATA_DOUBLE) done * 100.0 / (NETDATA_DOUBLE) total);
}
else
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_COMPLETION, 100.0);
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_PENDING_REQUESTS, (NETDATA_DOUBLE)replication_globals.unsafe.pending);
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_ADDED, (NETDATA_DOUBLE)replication_globals.unsafe.added);
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_DONE, (NETDATA_DOUBLE)__atomic_load_n(&replication_globals.atomic.executed, __ATOMIC_RELAXED));
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_SKIPPED_NO_ROOM, (NETDATA_DOUBLE)replication_globals.unsafe.pending_no_room);
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_SENDER_RESETS, (NETDATA_DOUBLE)replication_globals.unsafe.sender_resets);
worker_set_metric(WORKER_JOB_CUSTOM_METRIC_SENDER_FULL, (NETDATA_DOUBLE)replication_globals.unsafe.senders_full);
replication_recursive_unlock();
worker_is_idle();
}
if(unlikely(replication_pipeline_execute_next() == REQUEST_QUEUE_EMPTY)) {
worker_is_busy(WORKER_JOB_WAIT);
replication_recursive_lock();
// the timeout also defines now frequently we will traverse all the pending requests
// when the outbound buffers of all senders is full
usec_t timeout;
if(slow) {
// no work to be done, wait for a request to come in
timeout = 1000 * USEC_PER_MS;
sender_thread_buffer_free();
}
else if(replication_globals.unsafe.pending > 0) {
if(replication_globals.unsafe.sender_resets == last_sender_resets)
timeout = 1000 * USEC_PER_MS;
else {
// there are pending requests waiting to be executed,
// but none could be executed at this time.
// try again after this time.
timeout = 100 * USEC_PER_MS;
}
last_sender_resets = replication_globals.unsafe.sender_resets;
}
else {
// no requests pending, but there were requests recently (run_verification_countdown)
// so, try in a short time.
// if this is big, one chart replicating will be slow to finish (ping - pong just one chart)
timeout = 10 * USEC_PER_MS;
last_sender_resets = replication_globals.unsafe.sender_resets;
}
replication_recursive_unlock();
worker_is_idle();
sleep_usec(timeout);
// make it scan all the pending requests next time
replication_set_next_point_in_time(0, 0);
replication_reset_next_point_in_time_countdown = SECONDS_TO_RESET_POINT_IN_TIME;
continue;
}
}
netdata_thread_cleanup_pop(1);
return NULL;
}