0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-14 17:48:37 +00:00
netdata_netdata/collectors/apps.plugin/apps_plugin.c
Costa Tsaousis f466b8aef5
DYNCFG: dynamically configured alerts ()
* cleanup alerts

* fix references

* fix references

* fix references

* load alerts once and apply them to each node

* simplify health_create_alarm_entry()

* Compile without warnings with compiler flags:

   -Wall -Wextra -Wformat=2 -Wshadow -Wno-format-nonliteral -Winit-self

* code re-organization and cleanup

* generate patterns when applying prototypes; give unique dyncfg names to all alerts

* eval expressions keep the source and the parsed_as as STRING pointers

* renamed host to node in dyncfg ids

* renamed host to node in dyncfg ids

* add all cloud roles to the list of parsed X-Netdata-Role header and also default to member access level

* working functionality

* code re-organization: moved health event-loop to a new file, moved health globals to health.c

* rrdcalctemplate is removed; alert_cfg is removed; foreach dimension is removed; RRDCALCs are now instanciated only when they are linked to RRDSETs

* dyncfg alert prototypes initialization for alerts

* health dyncfg split to separate file

* cleanup not-needed code

* normalize matches between parsing and json

* also detect !* for disabled alerts

* dyncfg capability disabled

* Store alert config part1

* Add rrdlabels_common_count

* wip health variables lookup without indexes

* Improve rrdlabels_common_count by reusing rrdlabels_find_label_with_key_unsafe with an additional parameter

* working variables with runtime lookup

* working variables with runtime lookup

* delete rrddimvar and rrdfamily index

* remove rrdsetvar; now all variables are in RRDVARs inside hosts and charts

* added /api/v1/variable that resolves a variable the same way alerts do

* remove rrdcalc from eval

* remove debug code

* remove duplicate assignment

* Fix memory leak

* all alert variables are now handled by alert_variable_lookup() and EVAL is now independent of alerts

* hide all internal structures of EVAL

* Enable -Wformat flag

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>

* Adjust binding for calculation, warning, critical

* Remove unused macro

* Update config hash id

* use the right info and summary in alerts log

* use synchronous queries for alerts

* Handle cases when config_hash_id is missing from health_log

* remove deadlock from health worker

* parsing to json payload for health alert prototypes

* cleaner parsing and avoiding memory leaks in case of duplicate members in json

* fix left-over rename of function

* Keep original lookup field to send to the cloud
Cleanup / rename function to store config
Remove unused DEFINEs, functions

* Use ac->lookup

* link jobs to the host when the template is registered; do not accept running a function without a host

* full dyncfg support for health alerts, except action TEST

* working dyncfg additions, updates, removals

* fixed missing source, wrong status updates

* add alerts by type, component, classification, recipient and module at the /api/v2/alerts endpoint

* fix dyncfg unittest

* rename functions

* generalize the json-c parser macros and move them to libnetdata

* report progress when enabling and disabling dyncfg templates

* moved rrdcalc and rrdvar to health

* update alarms

* added schema for alerts; separated alert_action_options from rrdr_options; restructured the json payload for alerts

* enable parsed json alerts; allow sending back accepted but disabled

* added format_version for alerts payload; enables/disables status now is also inheritted by the status of the rules; fixed variable names in json output

* remove the RRDHOST pointer from DYNCFG

* Fix command field submitted to the cloud

* do not send updates to creation requests, for DYNCFG jobs

---------

Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud>
Co-authored-by: Stelios Fragkakis <52996999+stelfrag@users.noreply.github.com>
Co-authored-by: Tasos Katsoulas <tasos@netdata.cloud>
Co-authored-by: ilyam8 <ilya@netdata.cloud>
2024-01-23 20:20:41 +02:00

5428 lines
207 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
/*
* netdata apps.plugin
* (C) Copyright 2023 Netdata Inc.
* Released under GPL v3+
*/
#include "collectors/all.h"
#include "libnetdata/libnetdata.h"
#include "libnetdata/required_dummies.h"
#define APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION "Detailed information on the currently running processes."
#define APPS_PLUGIN_FUNCTIONS() do { \
fprintf(stdout, PLUGINSD_KEYWORD_FUNCTION " \"processes\" %d \"%s\" \"top\" \"members\" %d\n", \
PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT, APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION, \
RRDFUNCTIONS_PRIORITY_DEFAULT / 10); \
} while(0)
#define APPS_PLUGIN_GLOBAL_FUNCTIONS() do { \
fprintf(stdout, PLUGINSD_KEYWORD_FUNCTION " GLOBAL \"processes\" %d \"%s\" \"top\" \"members\" %d\n", \
PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT, APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION, \
RRDFUNCTIONS_PRIORITY_DEFAULT / 10); \
} while(0)
// ----------------------------------------------------------------------------
// debugging
static int debug_enabled = 0;
static inline void debug_log_int(const char *fmt, ... ) {
va_list args;
fprintf( stderr, "apps.plugin: ");
va_start( args, fmt );
vfprintf( stderr, fmt, args );
va_end( args );
fputc('\n', stderr);
}
#ifdef NETDATA_INTERNAL_CHECKS
#define debug_log(fmt, args...) do { if(unlikely(debug_enabled)) debug_log_int(fmt, ##args); } while(0)
#else
static inline void debug_log_dummy(void) {}
#define debug_log(fmt, args...) debug_log_dummy()
#endif
// ----------------------------------------------------------------------------
#ifdef __FreeBSD__
#include <sys/user.h>
#endif
// ----------------------------------------------------------------------------
// per O/S configuration
// the minimum PID of the system
// this is also the pid of the init process
#define INIT_PID 1
// if the way apps.plugin will work, will read the entire process list,
// including the resource utilization of each process, instantly
// set this to 1
// when set to 0, apps.plugin builds a sort list of processes, in order
// to process children processes, before parent processes
#ifdef __FreeBSD__
#define ALL_PIDS_ARE_READ_INSTANTLY 1
#else
#define ALL_PIDS_ARE_READ_INSTANTLY 0
#endif
// ----------------------------------------------------------------------------
// string lengths
#define MAX_COMPARE_NAME 100
#define MAX_NAME 100
#define MAX_CMDLINE 16384
// ----------------------------------------------------------------------------
// the rates we are going to send to netdata will have this detail a value of:
// - 1 will send just integer parts to netdata
// - 100 will send 2 decimal points
// - 1000 will send 3 decimal points
// etc.
#define RATES_DETAIL 10000ULL
// ----------------------------------------------------------------------------
// factor for calculating correct CPU time values depending on units of raw data
static unsigned int time_factor = 0;
// ----------------------------------------------------------------------------
// to avoid reallocating too frequently, we can increase the number of spare
// file descriptors used by processes.
// IMPORTANT:
// having a lot of spares, increases the CPU utilization of the plugin.
#define MAX_SPARE_FDS 1
// ----------------------------------------------------------------------------
// command line options
static int
update_every = 1,
enable_guest_charts = 0,
#ifdef __FreeBSD__
enable_file_charts = 0,
#else
enable_file_charts = 1,
max_fds_cache_seconds = 60,
#endif
enable_function_cmdline = 0,
enable_detailed_uptime_charts = 0,
enable_users_charts = 1,
enable_groups_charts = 1,
include_exited_childs = 1;
// will be changed to getenv(NETDATA_USER_CONFIG_DIR) if it exists
static char *user_config_dir = CONFIG_DIR;
static char *stock_config_dir = LIBCONFIG_DIR;
// some variables for keeping track of processes count by states
typedef enum {
PROC_STATUS_RUNNING = 0,
PROC_STATUS_SLEEPING_D, // uninterruptible sleep
PROC_STATUS_SLEEPING, // interruptible sleep
PROC_STATUS_ZOMBIE,
PROC_STATUS_STOPPED,
PROC_STATUS_END, //place holder for ending enum fields
} proc_state;
#ifndef __FreeBSD__
static proc_state proc_state_count[PROC_STATUS_END];
static const char *proc_states[] = {
[PROC_STATUS_RUNNING] = "running",
[PROC_STATUS_SLEEPING] = "sleeping_interruptible",
[PROC_STATUS_SLEEPING_D] = "sleeping_uninterruptible",
[PROC_STATUS_ZOMBIE] = "zombie",
[PROC_STATUS_STOPPED] = "stopped",
};
#endif
// ----------------------------------------------------------------------------
// internal flags
// handled in code (automatically set)
// log each problem once per process
// log flood protection flags (log_thrown)
typedef enum __attribute__((packed)) {
PID_LOG_IO = (1 << 0),
PID_LOG_STATUS = (1 << 1),
PID_LOG_CMDLINE = (1 << 2),
PID_LOG_FDS = (1 << 3),
PID_LOG_STAT = (1 << 4),
PID_LOG_LIMITS = (1 << 5),
PID_LOG_LIMITS_DETAIL = (1 << 6),
} PID_LOG;
static int
show_guest_time = 0, // 1 when guest values are collected
show_guest_time_old = 0,
proc_pid_cmdline_is_needed = 0; // 1 when we need to read /proc/cmdline
// ----------------------------------------------------------------------------
// internal counters
static size_t
global_iterations_counter = 1,
calls_counter = 0,
file_counter = 0,
filenames_allocated_counter = 0,
inodes_changed_counter = 0,
links_changed_counter = 0,
targets_assignment_counter = 0;
// ----------------------------------------------------------------------------
// Normalization
//
// With normalization we lower the collected metrics by a factor to make them
// match the total utilization of the system.
// The discrepancy exists because apps.plugin needs some time to collect all
// the metrics. This results in utilization that exceeds the total utilization
// of the system.
//
// During normalization, we align the per-process utilization, to the total of
// the system. We first consume the exited children utilization and it the
// collected values is above the total, we proportionally scale each reported
// metric.
// the total system time, as reported by /proc/stat
static kernel_uint_t
global_utime = 0,
global_stime = 0,
global_gtime = 0;
// the normalization ratios, as calculated by normalize_utilization()
NETDATA_DOUBLE
utime_fix_ratio = 1.0,
stime_fix_ratio = 1.0,
gtime_fix_ratio = 1.0,
minflt_fix_ratio = 1.0,
majflt_fix_ratio = 1.0,
cutime_fix_ratio = 1.0,
cstime_fix_ratio = 1.0,
cgtime_fix_ratio = 1.0,
cminflt_fix_ratio = 1.0,
cmajflt_fix_ratio = 1.0;
struct pid_on_target {
int32_t pid;
struct pid_on_target *next;
};
struct openfds {
kernel_uint_t files;
kernel_uint_t pipes;
kernel_uint_t sockets;
kernel_uint_t inotifies;
kernel_uint_t eventfds;
kernel_uint_t timerfds;
kernel_uint_t signalfds;
kernel_uint_t eventpolls;
kernel_uint_t other;
};
#define pid_openfds_sum(p) ((p)->openfds.files + (p)->openfds.pipes + (p)->openfds.sockets + (p)->openfds.inotifies + (p)->openfds.eventfds + (p)->openfds.timerfds + (p)->openfds.signalfds + (p)->openfds.eventpolls + (p)->openfds.other)
struct pid_limits {
// kernel_uint_t max_cpu_time;
// kernel_uint_t max_file_size;
// kernel_uint_t max_data_size;
// kernel_uint_t max_stack_size;
// kernel_uint_t max_core_file_size;
// kernel_uint_t max_resident_set;
// kernel_uint_t max_processes;
kernel_uint_t max_open_files;
// kernel_uint_t max_locked_memory;
// kernel_uint_t max_address_space;
// kernel_uint_t max_file_locks;
// kernel_uint_t max_pending_signals;
// kernel_uint_t max_msgqueue_size;
// kernel_uint_t max_nice_priority;
// kernel_uint_t max_realtime_priority;
// kernel_uint_t max_realtime_timeout;
};
// ----------------------------------------------------------------------------
// target
//
// target is the structure that processes are aggregated to be reported
// to netdata.
//
// - Each entry in /etc/apps_groups.conf creates a target.
// - Each user and group used by a process in the system, creates a target.
struct target {
char compare[MAX_COMPARE_NAME + 1];
uint32_t comparehash;
size_t comparelen;
char id[MAX_NAME + 1];
uint32_t idhash;
char name[MAX_NAME + 1];
char clean_name[MAX_NAME + 1]; // sanitized name used in chart id (need to replace at least dots)
uid_t uid;
gid_t gid;
bool is_other;
kernel_uint_t minflt;
kernel_uint_t cminflt;
kernel_uint_t majflt;
kernel_uint_t cmajflt;
kernel_uint_t utime;
kernel_uint_t stime;
kernel_uint_t gtime;
kernel_uint_t cutime;
kernel_uint_t cstime;
kernel_uint_t cgtime;
kernel_uint_t num_threads;
// kernel_uint_t rss;
kernel_uint_t status_vmsize;
kernel_uint_t status_vmrss;
kernel_uint_t status_vmshared;
kernel_uint_t status_rssfile;
kernel_uint_t status_rssshmem;
kernel_uint_t status_vmswap;
kernel_uint_t status_voluntary_ctxt_switches;
kernel_uint_t status_nonvoluntary_ctxt_switches;
kernel_uint_t io_logical_bytes_read;
kernel_uint_t io_logical_bytes_written;
kernel_uint_t io_read_calls;
kernel_uint_t io_write_calls;
kernel_uint_t io_storage_bytes_read;
kernel_uint_t io_storage_bytes_written;
kernel_uint_t io_cancelled_write_bytes;
int *target_fds;
int target_fds_size;
struct openfds openfds;
NETDATA_DOUBLE max_open_files_percent;
kernel_uint_t starttime;
kernel_uint_t collected_starttime;
kernel_uint_t uptime_min;
kernel_uint_t uptime_sum;
kernel_uint_t uptime_max;
unsigned int processes; // how many processes have been merged to this
int exposed; // if set, we have sent this to netdata
int hidden; // if set, we set the hidden flag on the dimension
int debug_enabled;
int ends_with;
int starts_with; // if set, the compare string matches only the
// beginning of the command
struct pid_on_target *root_pid; // list of aggregated pids for target debugging
struct target *target; // the one that will be reported to netdata
struct target *next;
};
struct target
*apps_groups_default_target = NULL, // the default target
*apps_groups_root_target = NULL, // apps_groups.conf defined
*users_root_target = NULL, // users
*groups_root_target = NULL; // user groups
size_t
apps_groups_targets_count = 0; // # of apps_groups.conf targets
// ----------------------------------------------------------------------------
// pid_stat
//
// structure to store data for each process running
// see: man proc for the description of the fields
struct pid_fd {
int fd;
#ifndef __FreeBSD__
ino_t inode;
char *filename;
uint32_t link_hash;
size_t cache_iterations_counter;
size_t cache_iterations_reset;
#endif
};
struct pid_stat {
int32_t pid;
int32_t ppid;
// int32_t pgrp;
// int32_t session;
// int32_t tty_nr;
// int32_t tpgid;
// uint64_t flags;
char state;
char comm[MAX_COMPARE_NAME + 1];
char *cmdline;
// these are raw values collected
kernel_uint_t minflt_raw;
kernel_uint_t cminflt_raw;
kernel_uint_t majflt_raw;
kernel_uint_t cmajflt_raw;
kernel_uint_t utime_raw;
kernel_uint_t stime_raw;
kernel_uint_t gtime_raw; // guest_time
kernel_uint_t cutime_raw;
kernel_uint_t cstime_raw;
kernel_uint_t cgtime_raw; // cguest_time
// these are rates
kernel_uint_t minflt;
kernel_uint_t cminflt;
kernel_uint_t majflt;
kernel_uint_t cmajflt;
kernel_uint_t utime;
kernel_uint_t stime;
kernel_uint_t gtime;
kernel_uint_t cutime;
kernel_uint_t cstime;
kernel_uint_t cgtime;
// int64_t priority;
// int64_t nice;
int32_t num_threads;
// int64_t itrealvalue;
kernel_uint_t collected_starttime;
// kernel_uint_t vsize;
// kernel_uint_t rss;
// kernel_uint_t rsslim;
// kernel_uint_t starcode;
// kernel_uint_t endcode;
// kernel_uint_t startstack;
// kernel_uint_t kstkesp;
// kernel_uint_t kstkeip;
// uint64_t signal;
// uint64_t blocked;
// uint64_t sigignore;
// uint64_t sigcatch;
// uint64_t wchan;
// uint64_t nswap;
// uint64_t cnswap;
// int32_t exit_signal;
// int32_t processor;
// uint32_t rt_priority;
// uint32_t policy;
// kernel_uint_t delayacct_blkio_ticks;
uid_t uid;
gid_t gid;
kernel_uint_t status_voluntary_ctxt_switches_raw;
kernel_uint_t status_nonvoluntary_ctxt_switches_raw;
kernel_uint_t status_vmsize;
kernel_uint_t status_vmrss;
kernel_uint_t status_vmshared;
kernel_uint_t status_rssfile;
kernel_uint_t status_rssshmem;
kernel_uint_t status_vmswap;
kernel_uint_t status_voluntary_ctxt_switches;
kernel_uint_t status_nonvoluntary_ctxt_switches;
#ifndef __FreeBSD__
ARL_BASE *status_arl;
#endif
kernel_uint_t io_logical_bytes_read_raw;
kernel_uint_t io_logical_bytes_written_raw;
kernel_uint_t io_read_calls_raw;
kernel_uint_t io_write_calls_raw;
kernel_uint_t io_storage_bytes_read_raw;
kernel_uint_t io_storage_bytes_written_raw;
kernel_uint_t io_cancelled_write_bytes_raw;
kernel_uint_t io_logical_bytes_read;
kernel_uint_t io_logical_bytes_written;
kernel_uint_t io_read_calls;
kernel_uint_t io_write_calls;
kernel_uint_t io_storage_bytes_read;
kernel_uint_t io_storage_bytes_written;
kernel_uint_t io_cancelled_write_bytes;
kernel_uint_t uptime;
struct pid_fd *fds; // array of fds it uses
size_t fds_size; // the size of the fds array
struct openfds openfds;
struct pid_limits limits;
NETDATA_DOUBLE openfds_limits_percent;
int sortlist; // higher numbers = top on the process tree
// each process gets a unique number
int children_count; // number of processes directly referencing this
int keeploops; // increases by 1 every time keep is 1 and updated 0
PID_LOG log_thrown;
bool keep; // true when we need to keep this process in memory even after it exited
bool updated; // true when the process is currently running
bool merged; // true when it has been merged to its parent
bool read; // true when we have already read this process for this iteration
bool matched_by_config;
struct target *target; // app_groups.conf targets
struct target *user_target; // uid based targets
struct target *group_target; // gid based targets
usec_t stat_collected_usec;
usec_t last_stat_collected_usec;
usec_t io_collected_usec;
usec_t last_io_collected_usec;
usec_t last_limits_collected_usec;
char *fds_dirname; // the full directory name in /proc/PID/fd
char *stat_filename;
char *status_filename;
char *io_filename;
char *cmdline_filename;
char *limits_filename;
struct pid_stat *parent;
struct pid_stat *prev;
struct pid_stat *next;
};
size_t pagesize;
kernel_uint_t global_uptime;
static struct pid_stat
*root_of_pids = NULL, // global list of all processes running
**all_pids = NULL; // to avoid allocations, we pre-allocate
// a pointer for each pid in the entire pid space.
static size_t
all_pids_count = 0; // the number of processes running
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
// Another pre-allocated list of all possible pids.
// We need it to pids and assign them a unique sortlist id, so that we
// read parents before children. This is needed to prevent a situation where
// a child is found running, but until we read its parent, it has exited and
// its parent has accumulated its resources.
static pid_t
*all_pids_sortlist = NULL;
#endif
// ----------------------------------------------------------------------------
// file descriptor
//
// this is used to keep a global list of all open files of the system.
// it is needed in order to calculate the unique files processes have open.
#define FILE_DESCRIPTORS_INCREASE_STEP 100
// types for struct file_descriptor->type
typedef enum fd_filetype {
FILETYPE_OTHER,
FILETYPE_FILE,
FILETYPE_PIPE,
FILETYPE_SOCKET,
FILETYPE_INOTIFY,
FILETYPE_EVENTFD,
FILETYPE_EVENTPOLL,
FILETYPE_TIMERFD,
FILETYPE_SIGNALFD
} FD_FILETYPE;
struct file_descriptor {
avl_t avl;
#ifdef NETDATA_INTERNAL_CHECKS
uint32_t magic;
#endif /* NETDATA_INTERNAL_CHECKS */
const char *name;
uint32_t hash;
FD_FILETYPE type;
int count;
int pos;
} *all_files = NULL;
static int
all_files_len = 0,
all_files_size = 0;
// ----------------------------------------------------------------------------
// read users and groups from files
struct user_or_group_id {
avl_t avl;
union {
uid_t uid;
gid_t gid;
} id;
char *name;
int updated;
struct user_or_group_id * next;
};
enum user_or_group_id_type {
USER_ID,
GROUP_ID
};
struct user_or_group_ids{
enum user_or_group_id_type type;
avl_tree_type index;
struct user_or_group_id *root;
char filename[FILENAME_MAX + 1];
};
int user_id_compare(void* a, void* b) {
if(((struct user_or_group_id *)a)->id.uid < ((struct user_or_group_id *)b)->id.uid)
return -1;
else if(((struct user_or_group_id *)a)->id.uid > ((struct user_or_group_id *)b)->id.uid)
return 1;
else
return 0;
}
struct user_or_group_ids all_user_ids = {
.type = USER_ID,
.index = {
NULL,
user_id_compare
},
.root = NULL,
.filename = "",
};
int group_id_compare(void* a, void* b) {
if(((struct user_or_group_id *)a)->id.gid < ((struct user_or_group_id *)b)->id.gid)
return -1;
else if(((struct user_or_group_id *)a)->id.gid > ((struct user_or_group_id *)b)->id.gid)
return 1;
else
return 0;
}
struct user_or_group_ids all_group_ids = {
.type = GROUP_ID,
.index = {
NULL,
group_id_compare
},
.root = NULL,
.filename = "",
};
int file_changed(const struct stat *statbuf, struct timespec *last_modification_time) {
if(likely(statbuf->st_mtim.tv_sec == last_modification_time->tv_sec &&
statbuf->st_mtim.tv_nsec == last_modification_time->tv_nsec)) return 0;
last_modification_time->tv_sec = statbuf->st_mtim.tv_sec;
last_modification_time->tv_nsec = statbuf->st_mtim.tv_nsec;
return 1;
}
int read_user_or_group_ids(struct user_or_group_ids *ids, struct timespec *last_modification_time) {
struct stat statbuf;
if(unlikely(stat(ids->filename, &statbuf)))
return 1;
else
if(likely(!file_changed(&statbuf, last_modification_time))) return 0;
procfile *ff = procfile_open(ids->filename, " :\t", PROCFILE_FLAG_DEFAULT);
if(unlikely(!ff)) return 1;
ff = procfile_readall(ff);
if(unlikely(!ff)) return 1;
size_t line, lines = procfile_lines(ff);
for(line = 0; line < lines ;line++) {
size_t words = procfile_linewords(ff, line);
if(unlikely(words < 3)) continue;
char *name = procfile_lineword(ff, line, 0);
if(unlikely(!name || !*name)) continue;
char *id_string = procfile_lineword(ff, line, 2);
if(unlikely(!id_string || !*id_string)) continue;
struct user_or_group_id *user_or_group_id = callocz(1, sizeof(struct user_or_group_id));
if(ids->type == USER_ID)
user_or_group_id->id.uid = (uid_t) str2ull(id_string, NULL);
else
user_or_group_id->id.gid = (uid_t) str2ull(id_string, NULL);
user_or_group_id->name = strdupz(name);
user_or_group_id->updated = 1;
struct user_or_group_id *existing_user_id = NULL;
if(likely(ids->root))
existing_user_id = (struct user_or_group_id *)avl_search(&ids->index, (avl_t *) user_or_group_id);
if(unlikely(existing_user_id)) {
freez(existing_user_id->name);
existing_user_id->name = user_or_group_id->name;
existing_user_id->updated = 1;
freez(user_or_group_id);
}
else {
if(unlikely(avl_insert(&ids->index, (avl_t *) user_or_group_id) != (void *) user_or_group_id)) {
netdata_log_error("INTERNAL ERROR: duplicate indexing of id during realloc");
}
user_or_group_id->next = ids->root;
ids->root = user_or_group_id;
}
}
procfile_close(ff);
// remove unused ids
struct user_or_group_id *user_or_group_id = ids->root, *prev_user_id = NULL;
while(user_or_group_id) {
if(unlikely(!user_or_group_id->updated)) {
if(unlikely((struct user_or_group_id *)avl_remove(&ids->index, (avl_t *) user_or_group_id) != user_or_group_id))
netdata_log_error("INTERNAL ERROR: removal of unused id from index, removed a different id");
if(prev_user_id)
prev_user_id->next = user_or_group_id->next;
else
ids->root = user_or_group_id->next;
freez(user_or_group_id->name);
freez(user_or_group_id);
if(prev_user_id)
user_or_group_id = prev_user_id->next;
else
user_or_group_id = ids->root;
}
else {
user_or_group_id->updated = 0;
prev_user_id = user_or_group_id;
user_or_group_id = user_or_group_id->next;
}
}
return 0;
}
// ----------------------------------------------------------------------------
// apps_groups.conf
// aggregate all processes in groups, to have a limited number of dimensions
static struct target *get_users_target(uid_t uid) {
struct target *w;
for(w = users_root_target ; w ; w = w->next)
if(w->uid == uid) return w;
w = callocz(sizeof(struct target), 1);
snprintfz(w->compare, MAX_COMPARE_NAME, "%u", uid);
w->comparehash = simple_hash(w->compare);
w->comparelen = strlen(w->compare);
snprintfz(w->id, MAX_NAME, "%u", uid);
w->idhash = simple_hash(w->id);
struct user_or_group_id user_id_to_find, *user_or_group_id = NULL;
user_id_to_find.id.uid = uid;
if(*netdata_configured_host_prefix) {
static struct timespec last_passwd_modification_time;
int ret = read_user_or_group_ids(&all_user_ids, &last_passwd_modification_time);
if(likely(!ret && all_user_ids.index.root))
user_or_group_id = (struct user_or_group_id *)avl_search(&all_user_ids.index, (avl_t *) &user_id_to_find);
}
if(user_or_group_id && user_or_group_id->name && *user_or_group_id->name) {
snprintfz(w->name, MAX_NAME, "%s", user_or_group_id->name);
}
else {
struct passwd *pw = getpwuid(uid);
if(!pw || !pw->pw_name || !*pw->pw_name)
snprintfz(w->name, MAX_NAME, "%u", uid);
else
snprintfz(w->name, MAX_NAME, "%s", pw->pw_name);
}
strncpyz(w->clean_name, w->name, MAX_NAME);
netdata_fix_chart_name(w->clean_name);
w->uid = uid;
w->next = users_root_target;
users_root_target = w;
debug_log("added uid %u ('%s') target", w->uid, w->name);
return w;
}
struct target *get_groups_target(gid_t gid)
{
struct target *w;
for(w = groups_root_target ; w ; w = w->next)
if(w->gid == gid) return w;
w = callocz(sizeof(struct target), 1);
snprintfz(w->compare, MAX_COMPARE_NAME, "%u", gid);
w->comparehash = simple_hash(w->compare);
w->comparelen = strlen(w->compare);
snprintfz(w->id, MAX_NAME, "%u", gid);
w->idhash = simple_hash(w->id);
struct user_or_group_id group_id_to_find, *group_id = NULL;
group_id_to_find.id.gid = gid;
if(*netdata_configured_host_prefix) {
static struct timespec last_group_modification_time;
int ret = read_user_or_group_ids(&all_group_ids, &last_group_modification_time);
if(likely(!ret && all_group_ids.index.root))
group_id = (struct user_or_group_id *)avl_search(&all_group_ids.index, (avl_t *) &group_id_to_find);
}
if(group_id && group_id->name && *group_id->name) {
snprintfz(w->name, MAX_NAME, "%s", group_id->name);
}
else {
struct group *gr = getgrgid(gid);
if(!gr || !gr->gr_name || !*gr->gr_name)
snprintfz(w->name, MAX_NAME, "%u", gid);
else
snprintfz(w->name, MAX_NAME, "%s", gr->gr_name);
}
strncpyz(w->clean_name, w->name, MAX_NAME);
netdata_fix_chart_name(w->clean_name);
w->gid = gid;
w->next = groups_root_target;
groups_root_target = w;
debug_log("added gid %u ('%s') target", w->gid, w->name);
return w;
}
// find or create a new target
// there are targets that are just aggregated to other target (the second argument)
static struct target *get_apps_groups_target(const char *id, struct target *target, const char *name) {
int tdebug = 0, thidden = target?target->hidden:0, ends_with = 0;
const char *nid = id;
// extract the options
while(nid[0] == '-' || nid[0] == '+' || nid[0] == '*') {
if(nid[0] == '-') thidden = 1;
if(nid[0] == '+') tdebug = 1;
if(nid[0] == '*') ends_with = 1;
nid++;
}
uint32_t hash = simple_hash(id);
// find if it already exists
struct target *w, *last = apps_groups_root_target;
for(w = apps_groups_root_target ; w ; w = w->next) {
if(w->idhash == hash && strncmp(nid, w->id, MAX_NAME) == 0)
return w;
last = w;
}
// find an existing target
if(unlikely(!target)) {
while(*name == '-') {
if(*name == '-') thidden = 1;
name++;
}
for(target = apps_groups_root_target ; target != NULL ; target = target->next) {
if(!target->target && strcmp(name, target->name) == 0)
break;
}
if(unlikely(debug_enabled)) {
if(unlikely(target))
debug_log("REUSING TARGET NAME '%s' on ID '%s'", target->name, target->id);
else
debug_log("NEW TARGET NAME '%s' on ID '%s'", name, id);
}
}
if(target && target->target)
fatal("Internal Error: request to link process '%s' to target '%s' which is linked to target '%s'", id, target->id, target->target->id);
w = callocz(sizeof(struct target), 1);
strncpyz(w->id, nid, MAX_NAME);
w->idhash = simple_hash(w->id);
if(unlikely(!target))
// copy the name
strncpyz(w->name, name, MAX_NAME);
else
// copy the id
strncpyz(w->name, nid, MAX_NAME);
// dots are used to distinguish chart type and id in streaming, so we should replace them
strncpyz(w->clean_name, w->name, MAX_NAME);
netdata_fix_chart_name(w->clean_name);
for (char *d = w->clean_name; *d; d++) {
if (*d == '.')
*d = '_';
}
strncpyz(w->compare, nid, MAX_COMPARE_NAME);
size_t len = strlen(w->compare);
if(w->compare[len - 1] == '*') {
w->compare[len - 1] = '\0';
w->starts_with = 1;
}
w->ends_with = ends_with;
if(w->starts_with && w->ends_with)
proc_pid_cmdline_is_needed = 1;
w->comparehash = simple_hash(w->compare);
w->comparelen = strlen(w->compare);
w->hidden = thidden;
#ifdef NETDATA_INTERNAL_CHECKS
w->debug_enabled = tdebug;
#else
if(tdebug)
fprintf(stderr, "apps.plugin has been compiled without debugging\n");
#endif
w->target = target;
// append it, to maintain the order in apps_groups.conf
if(last) last->next = w;
else apps_groups_root_target = w;
debug_log("ADDING TARGET ID '%s', process name '%s' (%s), aggregated on target '%s', options: %s %s"
, w->id
, w->compare, (w->starts_with && w->ends_with)?"substring":((w->starts_with)?"prefix":((w->ends_with)?"suffix":"exact"))
, w->target?w->target->name:w->name
, (w->hidden)?"hidden":"-"
, (w->debug_enabled)?"debug":"-"
);
return w;
}
// read the apps_groups.conf file
static int read_apps_groups_conf(const char *path, const char *file)
{
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/apps_%s.conf", path, file);
debug_log("process groups file: '%s'", filename);
// ----------------------------------------
procfile *ff = procfile_open(filename, " :\t", PROCFILE_FLAG_DEFAULT);
if(!ff) return 1;
procfile_set_quotes(ff, "'\"");
ff = procfile_readall(ff);
if(!ff)
return 1;
size_t line, lines = procfile_lines(ff);
for(line = 0; line < lines ;line++) {
size_t word, words = procfile_linewords(ff, line);
if(!words) continue;
char *name = procfile_lineword(ff, line, 0);
if(!name || !*name) continue;
// find a possibly existing target
struct target *w = NULL;
// loop through all words, skipping the first one (the name)
for(word = 0; word < words ;word++) {
char *s = procfile_lineword(ff, line, word);
if(!s || !*s) continue;
if(*s == '#') break;
// is this the first word? skip it
if(s == name) continue;
// add this target
struct target *n = get_apps_groups_target(s, w, name);
if(!n) {
netdata_log_error("Cannot create target '%s' (line %zu, word %zu)", s, line, word);
continue;
}
// just some optimization
// to avoid searching for a target for each process
if(!w) w = n->target?n->target:n;
}
}
procfile_close(ff);
apps_groups_default_target = get_apps_groups_target("p+!o@w#e$i^r&7*5(-i)l-o_", NULL, "other"); // match nothing
if(!apps_groups_default_target)
fatal("Cannot create default target");
apps_groups_default_target->is_other = true;
// allow the user to override group 'other'
if(apps_groups_default_target->target)
apps_groups_default_target = apps_groups_default_target->target;
return 0;
}
// ----------------------------------------------------------------------------
// struct pid_stat management
static inline void init_pid_fds(struct pid_stat *p, size_t first, size_t size);
static inline struct pid_stat *get_pid_entry(pid_t pid) {
if(unlikely(all_pids[pid]))
return all_pids[pid];
struct pid_stat *p = callocz(sizeof(struct pid_stat), 1);
p->fds = mallocz(sizeof(struct pid_fd) * MAX_SPARE_FDS);
p->fds_size = MAX_SPARE_FDS;
init_pid_fds(p, 0, p->fds_size);
p->pid = pid;
DOUBLE_LINKED_LIST_APPEND_ITEM_UNSAFE(root_of_pids, p, prev, next);
all_pids[pid] = p;
all_pids_count++;
return p;
}
static inline void del_pid_entry(pid_t pid) {
struct pid_stat *p = all_pids[pid];
if(unlikely(!p)) {
netdata_log_error("attempted to free pid %d that is not allocated.", pid);
return;
}
debug_log("process %d %s exited, deleting it.", pid, p->comm);
DOUBLE_LINKED_LIST_REMOVE_ITEM_UNSAFE(root_of_pids, p, prev, next);
// free the filename
#ifndef __FreeBSD__
{
size_t i;
for(i = 0; i < p->fds_size; i++)
if(p->fds[i].filename)
freez(p->fds[i].filename);
}
#endif
freez(p->fds);
freez(p->fds_dirname);
freez(p->stat_filename);
freez(p->status_filename);
freez(p->limits_filename);
#ifndef __FreeBSD__
arl_free(p->status_arl);
#endif
freez(p->io_filename);
freez(p->cmdline_filename);
freez(p->cmdline);
freez(p);
all_pids[pid] = NULL;
all_pids_count--;
}
// ----------------------------------------------------------------------------
static inline int managed_log(struct pid_stat *p, PID_LOG log, int status) {
if(unlikely(!status)) {
// netdata_log_error("command failed log %u, errno %d", log, errno);
if(unlikely(debug_enabled || errno != ENOENT)) {
if(unlikely(debug_enabled || !(p->log_thrown & log))) {
p->log_thrown |= log;
switch(log) {
case PID_LOG_IO:
#ifdef __FreeBSD__
netdata_log_error("Cannot fetch process %d I/O info (command '%s')", p->pid, p->comm);
#else
netdata_log_error("Cannot process %s/proc/%d/io (command '%s')", netdata_configured_host_prefix, p->pid, p->comm);
#endif
break;
case PID_LOG_STATUS:
#ifdef __FreeBSD__
netdata_log_error("Cannot fetch process %d status info (command '%s')", p->pid, p->comm);
#else
netdata_log_error("Cannot process %s/proc/%d/status (command '%s')", netdata_configured_host_prefix, p->pid, p->comm);
#endif
break;
case PID_LOG_CMDLINE:
#ifdef __FreeBSD__
netdata_log_error("Cannot fetch process %d command line (command '%s')", p->pid, p->comm);
#else
netdata_log_error("Cannot process %s/proc/%d/cmdline (command '%s')", netdata_configured_host_prefix, p->pid, p->comm);
#endif
break;
case PID_LOG_FDS:
#ifdef __FreeBSD__
netdata_log_error("Cannot fetch process %d files (command '%s')", p->pid, p->comm);
#else
netdata_log_error("Cannot process entries in %s/proc/%d/fd (command '%s')", netdata_configured_host_prefix, p->pid, p->comm);
#endif
break;
case PID_LOG_LIMITS:
#ifdef __FreeBSD__
;
#else
netdata_log_error("Cannot process %s/proc/%d/limits (command '%s')", netdata_configured_host_prefix, p->pid, p->comm);
#endif
case PID_LOG_STAT:
break;
default:
netdata_log_error("unhandled error for pid %d, command '%s'", p->pid, p->comm);
break;
}
}
}
errno = 0;
}
else if(unlikely(p->log_thrown & log)) {
// netdata_log_error("unsetting log %u on pid %d", log, p->pid);
p->log_thrown &= ~log;
}
return status;
}
static inline void assign_target_to_pid(struct pid_stat *p) {
targets_assignment_counter++;
uint32_t hash = simple_hash(p->comm);
size_t pclen = strlen(p->comm);
struct target *w;
for(w = apps_groups_root_target; w ; w = w->next) {
// if(debug_enabled || (p->target && p->target->debug_enabled)) debug_log_int("\t\tcomparing '%s' with '%s'", w->compare, p->comm);
// find it - 4 cases:
// 1. the target is not a pattern
// 2. the target has the prefix
// 3. the target has the suffix
// 4. the target is something inside cmdline
if(unlikely(( (!w->starts_with && !w->ends_with && w->comparehash == hash && !strcmp(w->compare, p->comm))
|| (w->starts_with && !w->ends_with && !strncmp(w->compare, p->comm, w->comparelen))
|| (!w->starts_with && w->ends_with && pclen >= w->comparelen && !strcmp(w->compare, &p->comm[pclen - w->comparelen]))
|| (proc_pid_cmdline_is_needed && w->starts_with && w->ends_with && p->cmdline && strstr(p->cmdline, w->compare))
))) {
p->matched_by_config = true;
if(w->target) p->target = w->target;
else p->target = w;
if(debug_enabled || (p->target && p->target->debug_enabled))
debug_log_int("%s linked to target %s", p->comm, p->target->name);
break;
}
}
}
// ----------------------------------------------------------------------------
// update pids from proc
static inline int read_proc_pid_cmdline(struct pid_stat *p) {
static char cmdline[MAX_CMDLINE + 1];
#ifdef __FreeBSD__
size_t i, bytes = MAX_CMDLINE;
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_ARGS;
mib[3] = p->pid;
if (unlikely(sysctl(mib, 4, cmdline, &bytes, NULL, 0)))
goto cleanup;
#else
if(unlikely(!p->cmdline_filename)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/%d/cmdline", netdata_configured_host_prefix, p->pid);
p->cmdline_filename = strdupz(filename);
}
int fd = open(p->cmdline_filename, procfile_open_flags, 0666);
if(unlikely(fd == -1)) goto cleanup;
ssize_t i, bytes = read(fd, cmdline, MAX_CMDLINE);
close(fd);
if(unlikely(bytes < 0)) goto cleanup;
#endif
cmdline[bytes] = '\0';
for(i = 0; i < bytes ; i++) {
if(unlikely(!cmdline[i])) cmdline[i] = ' ';
}
if(p->cmdline) freez(p->cmdline);
p->cmdline = strdupz(cmdline);
debug_log("Read file '%s' contents: %s", p->cmdline_filename, p->cmdline);
return 1;
cleanup:
// copy the command to the command line
if(p->cmdline) freez(p->cmdline);
p->cmdline = strdupz(p->comm);
return 0;
}
// ----------------------------------------------------------------------------
// macro to calculate the incremental rate of a value
// each parameter is accessed only ONCE - so it is safe to pass function calls
// or other macros as parameters
#define incremental_rate(rate_variable, last_kernel_variable, new_kernel_value, collected_usec, last_collected_usec) do { \
kernel_uint_t _new_tmp = new_kernel_value; \
(rate_variable) = (_new_tmp - (last_kernel_variable)) * (USEC_PER_SEC * RATES_DETAIL) / ((collected_usec) - (last_collected_usec)); \
(last_kernel_variable) = _new_tmp; \
} while(0)
// the same macro for struct pid members
#define pid_incremental_rate(type, var, value) \
incremental_rate(var, var##_raw, value, p->type##_collected_usec, p->last_##type##_collected_usec)
// ----------------------------------------------------------------------------
#ifndef __FreeBSD__
struct arl_callback_ptr {
struct pid_stat *p;
procfile *ff;
size_t line;
};
void arl_callback_status_uid(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 5)) return;
//const char *real_uid = procfile_lineword(aptr->ff, aptr->line, 1);
const char *effective_uid = procfile_lineword(aptr->ff, aptr->line, 2);
//const char *saved_uid = procfile_lineword(aptr->ff, aptr->line, 3);
//const char *filesystem_uid = procfile_lineword(aptr->ff, aptr->line, 4);
if(likely(effective_uid && *effective_uid))
aptr->p->uid = (uid_t)str2l(effective_uid);
}
void arl_callback_status_gid(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 5)) return;
//const char *real_gid = procfile_lineword(aptr->ff, aptr->line, 1);
const char *effective_gid = procfile_lineword(aptr->ff, aptr->line, 2);
//const char *saved_gid = procfile_lineword(aptr->ff, aptr->line, 3);
//const char *filesystem_gid = procfile_lineword(aptr->ff, aptr->line, 4);
if(likely(effective_gid && *effective_gid))
aptr->p->gid = (uid_t)str2l(effective_gid);
}
void arl_callback_status_vmsize(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return;
aptr->p->status_vmsize = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1));
}
void arl_callback_status_vmswap(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return;
aptr->p->status_vmswap = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1));
}
void arl_callback_status_vmrss(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return;
aptr->p->status_vmrss = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1));
}
void arl_callback_status_rssfile(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return;
aptr->p->status_rssfile = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1));
}
void arl_callback_status_rssshmem(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 3)) return;
aptr->p->status_rssshmem = str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1));
}
void arl_callback_status_voluntary_ctxt_switches(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 2)) return;
struct pid_stat *p = aptr->p;
pid_incremental_rate(stat, p->status_voluntary_ctxt_switches, str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)));
}
void arl_callback_status_nonvoluntary_ctxt_switches(const char *name, uint32_t hash, const char *value, void *dst) {
(void)name; (void)hash; (void)value;
struct arl_callback_ptr *aptr = (struct arl_callback_ptr *)dst;
if(unlikely(procfile_linewords(aptr->ff, aptr->line) < 2)) return;
struct pid_stat *p = aptr->p;
pid_incremental_rate(stat, p->status_nonvoluntary_ctxt_switches, str2kernel_uint_t(procfile_lineword(aptr->ff, aptr->line, 1)));
}
static void update_proc_state_count(char proc_stt) {
switch (proc_stt) {
case 'S':
proc_state_count[PROC_STATUS_SLEEPING] += 1;
break;
case 'R':
proc_state_count[PROC_STATUS_RUNNING] += 1;
break;
case 'D':
proc_state_count[PROC_STATUS_SLEEPING_D] += 1;
break;
case 'Z':
proc_state_count[PROC_STATUS_ZOMBIE] += 1;
break;
case 'T':
proc_state_count[PROC_STATUS_STOPPED] += 1;
break;
default:
break;
}
}
#endif // !__FreeBSD__
#define MAX_PROC_PID_LIMITS 8192
#define PROC_PID_LIMITS_MAX_OPEN_FILES_KEY "\nMax open files "
static inline kernel_uint_t get_proc_pid_limits_limit(char *buf, const char *key, size_t key_len, kernel_uint_t def) {
char *line = strstr(buf, key);
if(!line)
return def;
char *v = &line[key_len];
while(isspace(*v)) v++;
if(strcmp(v, "unlimited") == 0)
return 0;
return str2ull(v, NULL);
}
static inline int read_proc_pid_limits(struct pid_stat *p, void *ptr) {
(void)ptr;
#ifdef __FreeBSD__
return 0;
#else
static char proc_pid_limits_buffer[MAX_PROC_PID_LIMITS + 1];
int ret = 0;
bool read_limits = false;
errno = 0;
proc_pid_limits_buffer[0] = '\0';
kernel_uint_t all_fds = pid_openfds_sum(p);
if(all_fds < p->limits.max_open_files / 2 && p->io_collected_usec > p->last_limits_collected_usec && p->io_collected_usec - p->last_limits_collected_usec <= 60 * USEC_PER_SEC) {
// too frequent, we want to collect limits once per minute
ret = 1;
goto cleanup;
}
if(unlikely(!p->limits_filename)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/%d/limits", netdata_configured_host_prefix, p->pid);
p->limits_filename = strdupz(filename);
}
int fd = open(p->limits_filename, procfile_open_flags, 0666);
if(unlikely(fd == -1)) goto cleanup;
ssize_t bytes = read(fd, proc_pid_limits_buffer, MAX_PROC_PID_LIMITS);
close(fd);
if(bytes <= 0)
goto cleanup;
// make it '\0' terminated
if(bytes < MAX_PROC_PID_LIMITS)
proc_pid_limits_buffer[bytes] = '\0';
else
proc_pid_limits_buffer[MAX_PROC_PID_LIMITS - 1] = '\0';
p->limits.max_open_files = get_proc_pid_limits_limit(proc_pid_limits_buffer, PROC_PID_LIMITS_MAX_OPEN_FILES_KEY, sizeof(PROC_PID_LIMITS_MAX_OPEN_FILES_KEY) - 1, 0);
if(p->limits.max_open_files == 1) {
// it seems a bug in the kernel or something similar
// it sets max open files to 1 but the number of files
// the process has open are more than 1...
// https://github.com/netdata/netdata/issues/15443
p->limits.max_open_files = 0;
ret = 1;
goto cleanup;
}
p->last_limits_collected_usec = p->io_collected_usec;
read_limits = true;
ret = 1;
cleanup:
if(p->limits.max_open_files)
p->openfds_limits_percent = (NETDATA_DOUBLE)all_fds * 100.0 / (NETDATA_DOUBLE)p->limits.max_open_files;
else
p->openfds_limits_percent = 0.0;
if(p->openfds_limits_percent > 100.0) {
if(!(p->log_thrown & PID_LOG_LIMITS_DETAIL)) {
char *line;
if(!read_limits) {
proc_pid_limits_buffer[0] = '\0';
line = "NOT READ";
}
else {
line = strstr(proc_pid_limits_buffer, PROC_PID_LIMITS_MAX_OPEN_FILES_KEY);
if (line) {
line++; // skip the initial newline
char *end = strchr(line, '\n');
if (end)
*end = '\0';
}
}
netdata_log_info(
"FDS_LIMITS: PID %d (%s) is using "
"%0.2f %% of its fds limits, "
"open fds = %"PRIu64 "("
"files = %"PRIu64 ", "
"pipes = %"PRIu64 ", "
"sockets = %"PRIu64", "
"inotifies = %"PRIu64", "
"eventfds = %"PRIu64", "
"timerfds = %"PRIu64", "
"signalfds = %"PRIu64", "
"eventpolls = %"PRIu64" "
"other = %"PRIu64" "
"), open fds limit = %"PRIu64", "
"%s, "
"original line [%s]",
p->pid, p->comm, p->openfds_limits_percent, all_fds,
p->openfds.files,
p->openfds.pipes,
p->openfds.sockets,
p->openfds.inotifies,
p->openfds.eventfds,
p->openfds.timerfds,
p->openfds.signalfds,
p->openfds.eventpolls,
p->openfds.other,
p->limits.max_open_files,
read_limits ? "and we have read the limits AFTER counting the fds"
: "but we have read the limits BEFORE counting the fds",
line);
p->log_thrown |= PID_LOG_LIMITS_DETAIL;
}
}
else
p->log_thrown &= ~PID_LOG_LIMITS_DETAIL;
return ret;
#endif
}
static inline int read_proc_pid_status(struct pid_stat *p, void *ptr) {
p->status_vmsize = 0;
p->status_vmrss = 0;
p->status_vmshared = 0;
p->status_rssfile = 0;
p->status_rssshmem = 0;
p->status_vmswap = 0;
p->status_voluntary_ctxt_switches = 0;
p->status_nonvoluntary_ctxt_switches = 0;
#ifdef __FreeBSD__
struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr;
p->uid = proc_info->ki_uid;
p->gid = proc_info->ki_groups[0];
p->status_vmsize = proc_info->ki_size / 1024; // in KiB
p->status_vmrss = proc_info->ki_rssize * pagesize / 1024; // in KiB
// TODO: what about shared and swap memory on FreeBSD?
return 1;
#else
(void)ptr;
static struct arl_callback_ptr arl_ptr;
static procfile *ff = NULL;
if(unlikely(!p->status_arl)) {
p->status_arl = arl_create("/proc/pid/status", NULL, 60);
arl_expect_custom(p->status_arl, "Uid", arl_callback_status_uid, &arl_ptr);
arl_expect_custom(p->status_arl, "Gid", arl_callback_status_gid, &arl_ptr);
arl_expect_custom(p->status_arl, "VmSize", arl_callback_status_vmsize, &arl_ptr);
arl_expect_custom(p->status_arl, "VmRSS", arl_callback_status_vmrss, &arl_ptr);
arl_expect_custom(p->status_arl, "RssFile", arl_callback_status_rssfile, &arl_ptr);
arl_expect_custom(p->status_arl, "RssShmem", arl_callback_status_rssshmem, &arl_ptr);
arl_expect_custom(p->status_arl, "VmSwap", arl_callback_status_vmswap, &arl_ptr);
arl_expect_custom(p->status_arl, "voluntary_ctxt_switches", arl_callback_status_voluntary_ctxt_switches, &arl_ptr);
arl_expect_custom(p->status_arl, "nonvoluntary_ctxt_switches", arl_callback_status_nonvoluntary_ctxt_switches, &arl_ptr);
}
if(unlikely(!p->status_filename)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/%d/status", netdata_configured_host_prefix, p->pid);
p->status_filename = strdupz(filename);
}
ff = procfile_reopen(ff, p->status_filename, (!ff)?" \t:,-()/":NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO);
if(unlikely(!ff)) return 0;
ff = procfile_readall(ff);
if(unlikely(!ff)) return 0;
calls_counter++;
// let ARL use this pid
arl_ptr.p = p;
arl_ptr.ff = ff;
size_t lines = procfile_lines(ff), l;
arl_begin(p->status_arl);
for(l = 0; l < lines ;l++) {
// debug_log("CHECK: line %zu of %zu, key '%s' = '%s'", l, lines, procfile_lineword(ff, l, 0), procfile_lineword(ff, l, 1));
arl_ptr.line = l;
if(unlikely(arl_check(p->status_arl,
procfile_lineword(ff, l, 0),
procfile_lineword(ff, l, 1)))) break;
}
p->status_vmshared = p->status_rssfile + p->status_rssshmem;
// debug_log("%s uid %d, gid %d, VmSize %zu, VmRSS %zu, RssFile %zu, RssShmem %zu, shared %zu", p->comm, (int)p->uid, (int)p->gid, p->status_vmsize, p->status_vmrss, p->status_rssfile, p->status_rssshmem, p->status_vmshared);
return 1;
#endif
}
// ----------------------------------------------------------------------------
static inline int read_proc_pid_stat(struct pid_stat *p, void *ptr) {
(void)ptr;
#ifdef __FreeBSD__
struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr;
if (unlikely(proc_info->ki_tdflags & TDF_IDLETD))
goto cleanup;
#else
static procfile *ff = NULL;
if(unlikely(!p->stat_filename)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/%d/stat", netdata_configured_host_prefix, p->pid);
p->stat_filename = strdupz(filename);
}
int set_quotes = (!ff)?1:0;
ff = procfile_reopen(ff, p->stat_filename, NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO);
if(unlikely(!ff)) goto cleanup;
// if(set_quotes) procfile_set_quotes(ff, "()");
if(unlikely(set_quotes))
procfile_set_open_close(ff, "(", ")");
ff = procfile_readall(ff);
if(unlikely(!ff)) goto cleanup;
#endif
p->last_stat_collected_usec = p->stat_collected_usec;
p->stat_collected_usec = now_monotonic_usec();
calls_counter++;
#ifdef __FreeBSD__
char *comm = proc_info->ki_comm;
p->ppid = proc_info->ki_ppid;
#else
// p->pid = str2pid_t(procfile_lineword(ff, 0, 0));
char *comm = procfile_lineword(ff, 0, 1);
p->state = *(procfile_lineword(ff, 0, 2));
p->ppid = (int32_t)str2pid_t(procfile_lineword(ff, 0, 3));
// p->pgrp = (int32_t)str2pid_t(procfile_lineword(ff, 0, 4));
// p->session = (int32_t)str2pid_t(procfile_lineword(ff, 0, 5));
// p->tty_nr = (int32_t)str2pid_t(procfile_lineword(ff, 0, 6));
// p->tpgid = (int32_t)str2pid_t(procfile_lineword(ff, 0, 7));
// p->flags = str2uint64_t(procfile_lineword(ff, 0, 8));
#endif
if(strcmp(p->comm, comm) != 0) {
if(unlikely(debug_enabled)) {
if(p->comm[0])
debug_log("\tpid %d (%s) changed name to '%s'", p->pid, p->comm, comm);
else
debug_log("\tJust added %d (%s)", p->pid, comm);
}
strncpyz(p->comm, comm, MAX_COMPARE_NAME);
// /proc/<pid>/cmdline
if(likely(proc_pid_cmdline_is_needed))
managed_log(p, PID_LOG_CMDLINE, read_proc_pid_cmdline(p));
assign_target_to_pid(p);
}
#ifdef __FreeBSD__
pid_incremental_rate(stat, p->minflt, (kernel_uint_t)proc_info->ki_rusage.ru_minflt);
pid_incremental_rate(stat, p->cminflt, (kernel_uint_t)proc_info->ki_rusage_ch.ru_minflt);
pid_incremental_rate(stat, p->majflt, (kernel_uint_t)proc_info->ki_rusage.ru_majflt);
pid_incremental_rate(stat, p->cmajflt, (kernel_uint_t)proc_info->ki_rusage_ch.ru_majflt);
pid_incremental_rate(stat, p->utime, (kernel_uint_t)proc_info->ki_rusage.ru_utime.tv_sec * 100 + proc_info->ki_rusage.ru_utime.tv_usec / 10000);
pid_incremental_rate(stat, p->stime, (kernel_uint_t)proc_info->ki_rusage.ru_stime.tv_sec * 100 + proc_info->ki_rusage.ru_stime.tv_usec / 10000);
pid_incremental_rate(stat, p->cutime, (kernel_uint_t)proc_info->ki_rusage_ch.ru_utime.tv_sec * 100 + proc_info->ki_rusage_ch.ru_utime.tv_usec / 10000);
pid_incremental_rate(stat, p->cstime, (kernel_uint_t)proc_info->ki_rusage_ch.ru_stime.tv_sec * 100 + proc_info->ki_rusage_ch.ru_stime.tv_usec / 10000);
p->num_threads = proc_info->ki_numthreads;
if(enable_guest_charts) {
enable_guest_charts = 0;
netdata_log_info("Guest charts aren't supported by FreeBSD");
}
#else
pid_incremental_rate(stat, p->minflt, str2kernel_uint_t(procfile_lineword(ff, 0, 9)));
pid_incremental_rate(stat, p->cminflt, str2kernel_uint_t(procfile_lineword(ff, 0, 10)));
pid_incremental_rate(stat, p->majflt, str2kernel_uint_t(procfile_lineword(ff, 0, 11)));
pid_incremental_rate(stat, p->cmajflt, str2kernel_uint_t(procfile_lineword(ff, 0, 12)));
pid_incremental_rate(stat, p->utime, str2kernel_uint_t(procfile_lineword(ff, 0, 13)));
pid_incremental_rate(stat, p->stime, str2kernel_uint_t(procfile_lineword(ff, 0, 14)));
pid_incremental_rate(stat, p->cutime, str2kernel_uint_t(procfile_lineword(ff, 0, 15)));
pid_incremental_rate(stat, p->cstime, str2kernel_uint_t(procfile_lineword(ff, 0, 16)));
// p->priority = str2kernel_uint_t(procfile_lineword(ff, 0, 17));
// p->nice = str2kernel_uint_t(procfile_lineword(ff, 0, 18));
p->num_threads = (int32_t) str2uint32_t(procfile_lineword(ff, 0, 19), NULL);
// p->itrealvalue = str2kernel_uint_t(procfile_lineword(ff, 0, 20));
p->collected_starttime = str2kernel_uint_t(procfile_lineword(ff, 0, 21)) / system_hz;
p->uptime = (global_uptime > p->collected_starttime)?(global_uptime - p->collected_starttime):0;
// p->vsize = str2kernel_uint_t(procfile_lineword(ff, 0, 22));
// p->rss = str2kernel_uint_t(procfile_lineword(ff, 0, 23));
// p->rsslim = str2kernel_uint_t(procfile_lineword(ff, 0, 24));
// p->starcode = str2kernel_uint_t(procfile_lineword(ff, 0, 25));
// p->endcode = str2kernel_uint_t(procfile_lineword(ff, 0, 26));
// p->startstack = str2kernel_uint_t(procfile_lineword(ff, 0, 27));
// p->kstkesp = str2kernel_uint_t(procfile_lineword(ff, 0, 28));
// p->kstkeip = str2kernel_uint_t(procfile_lineword(ff, 0, 29));
// p->signal = str2kernel_uint_t(procfile_lineword(ff, 0, 30));
// p->blocked = str2kernel_uint_t(procfile_lineword(ff, 0, 31));
// p->sigignore = str2kernel_uint_t(procfile_lineword(ff, 0, 32));
// p->sigcatch = str2kernel_uint_t(procfile_lineword(ff, 0, 33));
// p->wchan = str2kernel_uint_t(procfile_lineword(ff, 0, 34));
// p->nswap = str2kernel_uint_t(procfile_lineword(ff, 0, 35));
// p->cnswap = str2kernel_uint_t(procfile_lineword(ff, 0, 36));
// p->exit_signal = str2kernel_uint_t(procfile_lineword(ff, 0, 37));
// p->processor = str2kernel_uint_t(procfile_lineword(ff, 0, 38));
// p->rt_priority = str2kernel_uint_t(procfile_lineword(ff, 0, 39));
// p->policy = str2kernel_uint_t(procfile_lineword(ff, 0, 40));
// p->delayacct_blkio_ticks = str2kernel_uint_t(procfile_lineword(ff, 0, 41));
if(enable_guest_charts) {
pid_incremental_rate(stat, p->gtime, str2kernel_uint_t(procfile_lineword(ff, 0, 42)));
pid_incremental_rate(stat, p->cgtime, str2kernel_uint_t(procfile_lineword(ff, 0, 43)));
if (show_guest_time || p->gtime || p->cgtime) {
p->utime -= (p->utime >= p->gtime) ? p->gtime : p->utime;
p->cutime -= (p->cutime >= p->cgtime) ? p->cgtime : p->cutime;
show_guest_time = 1;
}
}
#endif
if(unlikely(debug_enabled || (p->target && p->target->debug_enabled)))
debug_log_int("READ PROC/PID/STAT: %s/proc/%d/stat, process: '%s' on target '%s' (dt=%llu) VALUES: utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT ", threads=%d", netdata_configured_host_prefix, p->pid, p->comm, (p->target)?p->target->name:"UNSET", p->stat_collected_usec - p->last_stat_collected_usec, p->utime, p->stime, p->cutime, p->cstime, p->minflt, p->majflt, p->cminflt, p->cmajflt, p->num_threads);
if(unlikely(global_iterations_counter == 1)) {
p->minflt = 0;
p->cminflt = 0;
p->majflt = 0;
p->cmajflt = 0;
p->utime = 0;
p->stime = 0;
p->gtime = 0;
p->cutime = 0;
p->cstime = 0;
p->cgtime = 0;
}
#ifndef __FreeBSD__
update_proc_state_count(p->state);
#endif
return 1;
cleanup:
p->minflt = 0;
p->cminflt = 0;
p->majflt = 0;
p->cmajflt = 0;
p->utime = 0;
p->stime = 0;
p->gtime = 0;
p->cutime = 0;
p->cstime = 0;
p->cgtime = 0;
p->num_threads = 0;
// p->rss = 0;
return 0;
}
// ----------------------------------------------------------------------------
static inline int read_proc_pid_io(struct pid_stat *p, void *ptr) {
(void)ptr;
#ifdef __FreeBSD__
struct kinfo_proc *proc_info = (struct kinfo_proc *)ptr;
#else
static procfile *ff = NULL;
if(unlikely(!p->io_filename)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/%d/io", netdata_configured_host_prefix, p->pid);
p->io_filename = strdupz(filename);
}
// open the file
ff = procfile_reopen(ff, p->io_filename, NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO);
if(unlikely(!ff)) goto cleanup;
ff = procfile_readall(ff);
if(unlikely(!ff)) goto cleanup;
#endif
calls_counter++;
p->last_io_collected_usec = p->io_collected_usec;
p->io_collected_usec = now_monotonic_usec();
#ifdef __FreeBSD__
pid_incremental_rate(io, p->io_storage_bytes_read, proc_info->ki_rusage.ru_inblock);
pid_incremental_rate(io, p->io_storage_bytes_written, proc_info->ki_rusage.ru_oublock);
#else
pid_incremental_rate(io, p->io_logical_bytes_read, str2kernel_uint_t(procfile_lineword(ff, 0, 1)));
pid_incremental_rate(io, p->io_logical_bytes_written, str2kernel_uint_t(procfile_lineword(ff, 1, 1)));
pid_incremental_rate(io, p->io_read_calls, str2kernel_uint_t(procfile_lineword(ff, 2, 1)));
pid_incremental_rate(io, p->io_write_calls, str2kernel_uint_t(procfile_lineword(ff, 3, 1)));
pid_incremental_rate(io, p->io_storage_bytes_read, str2kernel_uint_t(procfile_lineword(ff, 4, 1)));
pid_incremental_rate(io, p->io_storage_bytes_written, str2kernel_uint_t(procfile_lineword(ff, 5, 1)));
pid_incremental_rate(io, p->io_cancelled_write_bytes, str2kernel_uint_t(procfile_lineword(ff, 6, 1)));
#endif
if(unlikely(global_iterations_counter == 1)) {
p->io_logical_bytes_read = 0;
p->io_logical_bytes_written = 0;
p->io_read_calls = 0;
p->io_write_calls = 0;
p->io_storage_bytes_read = 0;
p->io_storage_bytes_written = 0;
p->io_cancelled_write_bytes = 0;
}
return 1;
#ifndef __FreeBSD__
cleanup:
p->io_logical_bytes_read = 0;
p->io_logical_bytes_written = 0;
p->io_read_calls = 0;
p->io_write_calls = 0;
p->io_storage_bytes_read = 0;
p->io_storage_bytes_written = 0;
p->io_cancelled_write_bytes = 0;
return 0;
#endif
}
#ifndef __FreeBSD__
static inline int read_global_time() {
static char filename[FILENAME_MAX + 1] = "";
static procfile *ff = NULL;
static kernel_uint_t utime_raw = 0, stime_raw = 0, gtime_raw = 0, gntime_raw = 0, ntime_raw = 0;
static usec_t collected_usec = 0, last_collected_usec = 0;
if(unlikely(!ff)) {
snprintfz(filename, FILENAME_MAX, "%s/proc/stat", netdata_configured_host_prefix);
ff = procfile_open(filename, " \t:", PROCFILE_FLAG_DEFAULT);
if(unlikely(!ff)) goto cleanup;
}
ff = procfile_readall(ff);
if(unlikely(!ff)) goto cleanup;
last_collected_usec = collected_usec;
collected_usec = now_monotonic_usec();
calls_counter++;
// temporary - it is added global_ntime;
kernel_uint_t global_ntime = 0;
incremental_rate(global_utime, utime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 1)), collected_usec, last_collected_usec);
incremental_rate(global_ntime, ntime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 2)), collected_usec, last_collected_usec);
incremental_rate(global_stime, stime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 3)), collected_usec, last_collected_usec);
incremental_rate(global_gtime, gtime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 10)), collected_usec, last_collected_usec);
global_utime += global_ntime;
if(enable_guest_charts) {
// temporary - it is added global_ntime;
kernel_uint_t global_gntime = 0;
// guest nice time, on guest time
incremental_rate(global_gntime, gntime_raw, str2kernel_uint_t(procfile_lineword(ff, 0, 11)), collected_usec, last_collected_usec);
global_gtime += global_gntime;
// remove guest time from user time
global_utime -= (global_utime > global_gtime) ? global_gtime : global_utime;
}
if(unlikely(global_iterations_counter == 1)) {
global_utime = 0;
global_stime = 0;
global_gtime = 0;
}
return 1;
cleanup:
global_utime = 0;
global_stime = 0;
global_gtime = 0;
return 0;
}
#else
static inline int read_global_time() {
static kernel_uint_t utime_raw = 0, stime_raw = 0, ntime_raw = 0;
static usec_t collected_usec = 0, last_collected_usec = 0;
long cp_time[CPUSTATES];
if (unlikely(CPUSTATES != 5)) {
goto cleanup;
} else {
static int mib[2] = {0, 0};
if (unlikely(GETSYSCTL_SIMPLE("kern.cp_time", mib, cp_time))) {
goto cleanup;
}
}
last_collected_usec = collected_usec;
collected_usec = now_monotonic_usec();
calls_counter++;
// temporary - it is added global_ntime;
kernel_uint_t global_ntime = 0;
incremental_rate(global_utime, utime_raw, cp_time[0] * 100LLU / system_hz, collected_usec, last_collected_usec);
incremental_rate(global_ntime, ntime_raw, cp_time[1] * 100LLU / system_hz, collected_usec, last_collected_usec);
incremental_rate(global_stime, stime_raw, cp_time[2] * 100LLU / system_hz, collected_usec, last_collected_usec);
global_utime += global_ntime;
if(unlikely(global_iterations_counter == 1)) {
global_utime = 0;
global_stime = 0;
global_gtime = 0;
}
return 1;
cleanup:
global_utime = 0;
global_stime = 0;
global_gtime = 0;
return 0;
}
#endif /* !__FreeBSD__ */
// ----------------------------------------------------------------------------
int file_descriptor_compare(void* a, void* b) {
#ifdef NETDATA_INTERNAL_CHECKS
if(((struct file_descriptor *)a)->magic != 0x0BADCAFE || ((struct file_descriptor *)b)->magic != 0x0BADCAFE)
netdata_log_error("Corrupted index data detected. Please report this.");
#endif /* NETDATA_INTERNAL_CHECKS */
if(((struct file_descriptor *)a)->hash < ((struct file_descriptor *)b)->hash)
return -1;
else if(((struct file_descriptor *)a)->hash > ((struct file_descriptor *)b)->hash)
return 1;
else
return strcmp(((struct file_descriptor *)a)->name, ((struct file_descriptor *)b)->name);
}
// int file_descriptor_iterator(avl_t *a) { if(a) {}; return 0; }
avl_tree_type all_files_index = {
NULL,
file_descriptor_compare
};
static struct file_descriptor *file_descriptor_find(const char *name, uint32_t hash) {
struct file_descriptor tmp;
tmp.hash = (hash)?hash:simple_hash(name);
tmp.name = name;
tmp.count = 0;
tmp.pos = 0;
#ifdef NETDATA_INTERNAL_CHECKS
tmp.magic = 0x0BADCAFE;
#endif /* NETDATA_INTERNAL_CHECKS */
return (struct file_descriptor *)avl_search(&all_files_index, (avl_t *) &tmp);
}
#define file_descriptor_add(fd) avl_insert(&all_files_index, (avl_t *)(fd))
#define file_descriptor_remove(fd) avl_remove(&all_files_index, (avl_t *)(fd))
// ----------------------------------------------------------------------------
static inline void file_descriptor_not_used(int id)
{
if(id > 0 && id < all_files_size) {
#ifdef NETDATA_INTERNAL_CHECKS
if(all_files[id].magic != 0x0BADCAFE) {
netdata_log_error("Ignoring request to remove empty file id %d.", id);
return;
}
#endif /* NETDATA_INTERNAL_CHECKS */
debug_log("decreasing slot %d (count = %d).", id, all_files[id].count);
if(all_files[id].count > 0) {
all_files[id].count--;
if(!all_files[id].count) {
debug_log(" >> slot %d is empty.", id);
if(unlikely(file_descriptor_remove(&all_files[id]) != (void *)&all_files[id]))
netdata_log_error("INTERNAL ERROR: removal of unused fd from index, removed a different fd");
#ifdef NETDATA_INTERNAL_CHECKS
all_files[id].magic = 0x00000000;
#endif /* NETDATA_INTERNAL_CHECKS */
all_files_len--;
}
}
else
netdata_log_error("Request to decrease counter of fd %d (%s), while the use counter is 0",
id,
all_files[id].name);
}
else
netdata_log_error("Request to decrease counter of fd %d, which is outside the array size (1 to %d)",
id,
all_files_size);
}
static inline void all_files_grow() {
void *old = all_files;
int i;
// there is no empty slot
debug_log("extending fd array to %d entries", all_files_size + FILE_DESCRIPTORS_INCREASE_STEP);
all_files = reallocz(all_files, (all_files_size + FILE_DESCRIPTORS_INCREASE_STEP) * sizeof(struct file_descriptor));
// if the address changed, we have to rebuild the index
// since all pointers are now invalid
if(unlikely(old && old != (void *)all_files)) {
debug_log(" >> re-indexing.");
all_files_index.root = NULL;
for(i = 0; i < all_files_size; i++) {
if(!all_files[i].count) continue;
if(unlikely(file_descriptor_add(&all_files[i]) != (void *)&all_files[i]))
netdata_log_error("INTERNAL ERROR: duplicate indexing of fd during realloc.");
}
debug_log(" >> re-indexing done.");
}
// initialize the newly added entries
for(i = all_files_size; i < (all_files_size + FILE_DESCRIPTORS_INCREASE_STEP); i++) {
all_files[i].count = 0;
all_files[i].name = NULL;
#ifdef NETDATA_INTERNAL_CHECKS
all_files[i].magic = 0x00000000;
#endif /* NETDATA_INTERNAL_CHECKS */
all_files[i].pos = i;
}
if(unlikely(!all_files_size)) all_files_len = 1;
all_files_size += FILE_DESCRIPTORS_INCREASE_STEP;
}
static inline int file_descriptor_set_on_empty_slot(const char *name, uint32_t hash, FD_FILETYPE type) {
// check we have enough memory to add it
if(!all_files || all_files_len == all_files_size)
all_files_grow();
debug_log(" >> searching for empty slot.");
// search for an empty slot
static int last_pos = 0;
int i, c;
for(i = 0, c = last_pos ; i < all_files_size ; i++, c++) {
if(c >= all_files_size) c = 0;
if(c == 0) continue;
if(!all_files[c].count) {
debug_log(" >> Examining slot %d.", c);
#ifdef NETDATA_INTERNAL_CHECKS
if(all_files[c].magic == 0x0BADCAFE && all_files[c].name && file_descriptor_find(all_files[c].name, all_files[c].hash))
netdata_log_error("fd on position %d is not cleared properly. It still has %s in it.", c, all_files[c].name);
#endif /* NETDATA_INTERNAL_CHECKS */
debug_log(" >> %s fd position %d for %s (last name: %s)", all_files[c].name?"re-using":"using", c, name, all_files[c].name);
freez((void *)all_files[c].name);
all_files[c].name = NULL;
last_pos = c;
break;
}
}
all_files_len++;
if(i == all_files_size) {
fatal("We should find an empty slot, but there isn't any");
exit(1);
}
// else we have an empty slot in 'c'
debug_log(" >> updating slot %d.", c);
all_files[c].name = strdupz(name);
all_files[c].hash = hash;
all_files[c].type = type;
all_files[c].pos = c;
all_files[c].count = 1;
#ifdef NETDATA_INTERNAL_CHECKS
all_files[c].magic = 0x0BADCAFE;
#endif /* NETDATA_INTERNAL_CHECKS */
if(unlikely(file_descriptor_add(&all_files[c]) != (void *)&all_files[c]))
netdata_log_error("INTERNAL ERROR: duplicate indexing of fd.");
debug_log("using fd position %d (name: %s)", c, all_files[c].name);
return c;
}
static inline int file_descriptor_find_or_add(const char *name, uint32_t hash) {
if(unlikely(!hash))
hash = simple_hash(name);
debug_log("adding or finding name '%s' with hash %u", name, hash);
struct file_descriptor *fd = file_descriptor_find(name, hash);
if(fd) {
// found
debug_log(" >> found on slot %d", fd->pos);
fd->count++;
return fd->pos;
}
// not found
FD_FILETYPE type;
if(likely(name[0] == '/')) type = FILETYPE_FILE;
else if(likely(strncmp(name, "pipe:", 5) == 0)) type = FILETYPE_PIPE;
else if(likely(strncmp(name, "socket:", 7) == 0)) type = FILETYPE_SOCKET;
else if(likely(strncmp(name, "anon_inode:", 11) == 0)) {
const char *t = &name[11];
if(strcmp(t, "inotify") == 0) type = FILETYPE_INOTIFY;
else if(strcmp(t, "[eventfd]") == 0) type = FILETYPE_EVENTFD;
else if(strcmp(t, "[eventpoll]") == 0) type = FILETYPE_EVENTPOLL;
else if(strcmp(t, "[timerfd]") == 0) type = FILETYPE_TIMERFD;
else if(strcmp(t, "[signalfd]") == 0) type = FILETYPE_SIGNALFD;
else {
debug_log("UNKNOWN anonymous inode: %s", name);
type = FILETYPE_OTHER;
}
}
else if(likely(strcmp(name, "inotify") == 0)) type = FILETYPE_INOTIFY;
else {
debug_log("UNKNOWN linkname: %s", name);
type = FILETYPE_OTHER;
}
return file_descriptor_set_on_empty_slot(name, hash, type);
}
static inline void clear_pid_fd(struct pid_fd *pfd) {
pfd->fd = 0;
#ifndef __FreeBSD__
pfd->link_hash = 0;
pfd->inode = 0;
pfd->cache_iterations_counter = 0;
pfd->cache_iterations_reset = 0;
#endif
}
static inline void make_all_pid_fds_negative(struct pid_stat *p) {
struct pid_fd *pfd = p->fds, *pfdend = &p->fds[p->fds_size];
while(pfd < pfdend) {
pfd->fd = -(pfd->fd);
pfd++;
}
}
static inline void cleanup_negative_pid_fds(struct pid_stat *p) {
struct pid_fd *pfd = p->fds, *pfdend = &p->fds[p->fds_size];
while(pfd < pfdend) {
int fd = pfd->fd;
if(unlikely(fd < 0)) {
file_descriptor_not_used(-(fd));
clear_pid_fd(pfd);
}
pfd++;
}
}
static inline void init_pid_fds(struct pid_stat *p, size_t first, size_t size) {
struct pid_fd *pfd = &p->fds[first], *pfdend = &p->fds[first + size];
while(pfd < pfdend) {
#ifndef __FreeBSD__
pfd->filename = NULL;
#endif
clear_pid_fd(pfd);
pfd++;
}
}
static inline int read_pid_file_descriptors(struct pid_stat *p, void *ptr) {
(void)ptr;
#ifdef __FreeBSD__
int mib[4];
size_t size;
struct kinfo_file *fds;
static char *fdsbuf;
char *bfdsbuf, *efdsbuf;
char fdsname[FILENAME_MAX + 1];
#define SHM_FORMAT_LEN 31 // format: 21 + size: 10
char shm_name[FILENAME_MAX - SHM_FORMAT_LEN + 1];
// we make all pid fds negative, so that
// we can detect unused file descriptors
// at the end, to free them
make_all_pid_fds_negative(p);
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_FILEDESC;
mib[3] = p->pid;
if (unlikely(sysctl(mib, 4, NULL, &size, NULL, 0))) {
netdata_log_error("sysctl error: Can't get file descriptors data size for pid %d", p->pid);
return 0;
}
if (likely(size > 0))
fdsbuf = reallocz(fdsbuf, size);
if (unlikely(sysctl(mib, 4, fdsbuf, &size, NULL, 0))) {
netdata_log_error("sysctl error: Can't get file descriptors data for pid %d", p->pid);
return 0;
}
bfdsbuf = fdsbuf;
efdsbuf = fdsbuf + size;
while (bfdsbuf < efdsbuf) {
fds = (struct kinfo_file *)(uintptr_t)bfdsbuf;
if (unlikely(fds->kf_structsize == 0))
break;
// do not process file descriptors for current working directory, root directory,
// jail directory, ktrace vnode, text vnode and controlling terminal
if (unlikely(fds->kf_fd < 0)) {
bfdsbuf += fds->kf_structsize;
continue;
}
// get file descriptors array index
size_t fdid = fds->kf_fd;
// check if the fds array is small
if (unlikely(fdid >= p->fds_size)) {
// it is small, extend it
debug_log("extending fd memory slots for %s from %d to %d", p->comm, p->fds_size, fdid + MAX_SPARE_FDS);
p->fds = reallocz(p->fds, (fdid + MAX_SPARE_FDS) * sizeof(struct pid_fd));
// and initialize it
init_pid_fds(p, p->fds_size, (fdid + MAX_SPARE_FDS) - p->fds_size);
p->fds_size = fdid + MAX_SPARE_FDS;
}
if (unlikely(p->fds[fdid].fd == 0)) {
// we don't know this fd, get it
switch (fds->kf_type) {
case KF_TYPE_FIFO:
case KF_TYPE_VNODE:
if (unlikely(!fds->kf_path[0])) {
sprintf(fdsname, "other: inode: %lu", fds->kf_un.kf_file.kf_file_fileid);
break;
}
sprintf(fdsname, "%s", fds->kf_path);
break;
case KF_TYPE_SOCKET:
switch (fds->kf_sock_domain) {
case AF_INET:
case AF_INET6:
if (fds->kf_sock_protocol == IPPROTO_TCP)
sprintf(fdsname, "socket: %d %lx", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sock_inpcb);
else
sprintf(fdsname, "socket: %d %lx", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sock_pcb);
break;
case AF_UNIX:
/* print address of pcb and connected pcb */
sprintf(fdsname, "socket: %lx %lx", fds->kf_un.kf_sock.kf_sock_pcb, fds->kf_un.kf_sock.kf_sock_unpconn);
break;
default:
/* print protocol number and socket address */
#if __FreeBSD_version < 1200031
sprintf(fdsname, "socket: other: %d %s %s", fds->kf_sock_protocol, fds->kf_sa_local.__ss_pad1, fds->kf_sa_local.__ss_pad2);
#else
sprintf(fdsname, "socket: other: %d %s %s", fds->kf_sock_protocol, fds->kf_un.kf_sock.kf_sa_local.__ss_pad1, fds->kf_un.kf_sock.kf_sa_local.__ss_pad2);
#endif
}
break;
case KF_TYPE_PIPE:
sprintf(fdsname, "pipe: %lu %lu", fds->kf_un.kf_pipe.kf_pipe_addr, fds->kf_un.kf_pipe.kf_pipe_peer);
break;
case KF_TYPE_PTS:
#if __FreeBSD_version < 1200031
sprintf(fdsname, "other: pts: %u", fds->kf_un.kf_pts.kf_pts_dev);
#else
sprintf(fdsname, "other: pts: %lu", fds->kf_un.kf_pts.kf_pts_dev);
#endif
break;
case KF_TYPE_SHM:
strncpyz(shm_name, fds->kf_path, FILENAME_MAX - SHM_FORMAT_LEN);
sprintf(fdsname, "other: shm: %s size: %lu", shm_name, fds->kf_un.kf_file.kf_file_size);
break;
case KF_TYPE_SEM:
sprintf(fdsname, "other: sem: %u", fds->kf_un.kf_sem.kf_sem_value);
break;
default:
sprintf(fdsname, "other: pid: %d fd: %d", fds->kf_un.kf_proc.kf_pid, fds->kf_fd);
}
// if another process already has this, we will get
// the same id
p->fds[fdid].fd = file_descriptor_find_or_add(fdsname, 0);
}
// else make it positive again, we need it
// of course, the actual file may have changed
else
p->fds[fdid].fd = -p->fds[fdid].fd;
bfdsbuf += fds->kf_structsize;
}
#else
if(unlikely(!p->fds_dirname)) {
char dirname[FILENAME_MAX+1];
snprintfz(dirname, FILENAME_MAX, "%s/proc/%d/fd", netdata_configured_host_prefix, p->pid);
p->fds_dirname = strdupz(dirname);
}
DIR *fds = opendir(p->fds_dirname);
if(unlikely(!fds)) return 0;
struct dirent *de;
char linkname[FILENAME_MAX + 1];
// we make all pid fds negative, so that
// we can detect unused file descriptors
// at the end, to free them
make_all_pid_fds_negative(p);
while((de = readdir(fds))) {
// we need only files with numeric names
if(unlikely(de->d_name[0] < '0' || de->d_name[0] > '9'))
continue;
// get its number
int fdid = (int) str2l(de->d_name);
if(unlikely(fdid < 0)) continue;
// check if the fds array is small
if(unlikely((size_t)fdid >= p->fds_size)) {
// it is small, extend it
debug_log("extending fd memory slots for %s from %d to %d"
, p->comm
, p->fds_size
, fdid + MAX_SPARE_FDS
);
p->fds = reallocz(p->fds, (fdid + MAX_SPARE_FDS) * sizeof(struct pid_fd));
// and initialize it
init_pid_fds(p, p->fds_size, (fdid + MAX_SPARE_FDS) - p->fds_size);
p->fds_size = (size_t)fdid + MAX_SPARE_FDS;
}
if(unlikely(p->fds[fdid].fd < 0 && de->d_ino != p->fds[fdid].inode)) {
// inodes do not match, clear the previous entry
inodes_changed_counter++;
file_descriptor_not_used(-p->fds[fdid].fd);
clear_pid_fd(&p->fds[fdid]);
}
if(p->fds[fdid].fd < 0 && p->fds[fdid].cache_iterations_counter > 0) {
p->fds[fdid].fd = -p->fds[fdid].fd;
p->fds[fdid].cache_iterations_counter--;
continue;
}
if(unlikely(!p->fds[fdid].filename)) {
filenames_allocated_counter++;
char fdname[FILENAME_MAX + 1];
snprintfz(fdname, FILENAME_MAX, "%s/proc/%d/fd/%s", netdata_configured_host_prefix, p->pid, de->d_name);
p->fds[fdid].filename = strdupz(fdname);
}
file_counter++;
ssize_t l = readlink(p->fds[fdid].filename, linkname, FILENAME_MAX);
if(unlikely(l == -1)) {
// cannot read the link
if(debug_enabled || (p->target && p->target->debug_enabled))
netdata_log_error("Cannot read link %s", p->fds[fdid].filename);
if(unlikely(p->fds[fdid].fd < 0)) {
file_descriptor_not_used(-p->fds[fdid].fd);
clear_pid_fd(&p->fds[fdid]);
}
continue;
}
else
linkname[l] = '\0';
uint32_t link_hash = simple_hash(linkname);
if(unlikely(p->fds[fdid].fd < 0 && p->fds[fdid].link_hash != link_hash)) {
// the link changed
links_changed_counter++;
file_descriptor_not_used(-p->fds[fdid].fd);
clear_pid_fd(&p->fds[fdid]);
}
if(unlikely(p->fds[fdid].fd == 0)) {
// we don't know this fd, get it
// if another process already has this, we will get
// the same id
p->fds[fdid].fd = file_descriptor_find_or_add(linkname, link_hash);
p->fds[fdid].inode = de->d_ino;
p->fds[fdid].link_hash = link_hash;
}
else {
// else make it positive again, we need it
p->fds[fdid].fd = -p->fds[fdid].fd;
}
// caching control
// without this we read all the files on every iteration
if(max_fds_cache_seconds > 0) {
size_t spread = ((size_t)max_fds_cache_seconds > 10) ? 10 : (size_t)max_fds_cache_seconds;
// cache it for a few iterations
size_t max = ((size_t) max_fds_cache_seconds + (fdid % spread)) / (size_t) update_every;
p->fds[fdid].cache_iterations_reset++;
if(unlikely(p->fds[fdid].cache_iterations_reset % spread == (size_t) fdid % spread))
p->fds[fdid].cache_iterations_reset++;
if(unlikely((fdid <= 2 && p->fds[fdid].cache_iterations_reset > 5) ||
p->fds[fdid].cache_iterations_reset > max)) {
// for stdin, stdout, stderr (fdid <= 2) we have checked a few times, or if it goes above the max, goto max
p->fds[fdid].cache_iterations_reset = max;
}
p->fds[fdid].cache_iterations_counter = p->fds[fdid].cache_iterations_reset;
}
}
closedir(fds);
#endif
cleanup_negative_pid_fds(p);
return 1;
}
// ----------------------------------------------------------------------------
static inline int debug_print_process_and_parents(struct pid_stat *p, usec_t time) {
char *prefix = "\\_ ";
int indent = 0;
if(p->parent)
indent = debug_print_process_and_parents(p->parent, p->stat_collected_usec);
else
prefix = " > ";
char buffer[indent + 1];
int i;
for(i = 0; i < indent ;i++) buffer[i] = ' ';
buffer[i] = '\0';
fprintf(stderr, " %s %s%s (%d %s %"PRIu64""
, buffer
, prefix
, p->comm
, p->pid
, p->updated?"running":"exited"
, p->stat_collected_usec - time
);
if(p->utime) fprintf(stderr, " utime=" KERNEL_UINT_FORMAT, p->utime);
if(p->stime) fprintf(stderr, " stime=" KERNEL_UINT_FORMAT, p->stime);
if(p->gtime) fprintf(stderr, " gtime=" KERNEL_UINT_FORMAT, p->gtime);
if(p->cutime) fprintf(stderr, " cutime=" KERNEL_UINT_FORMAT, p->cutime);
if(p->cstime) fprintf(stderr, " cstime=" KERNEL_UINT_FORMAT, p->cstime);
if(p->cgtime) fprintf(stderr, " cgtime=" KERNEL_UINT_FORMAT, p->cgtime);
if(p->minflt) fprintf(stderr, " minflt=" KERNEL_UINT_FORMAT, p->minflt);
if(p->cminflt) fprintf(stderr, " cminflt=" KERNEL_UINT_FORMAT, p->cminflt);
if(p->majflt) fprintf(stderr, " majflt=" KERNEL_UINT_FORMAT, p->majflt);
if(p->cmajflt) fprintf(stderr, " cmajflt=" KERNEL_UINT_FORMAT, p->cmajflt);
fprintf(stderr, ")\n");
return indent + 1;
}
static inline void debug_print_process_tree(struct pid_stat *p, char *msg __maybe_unused) {
debug_log("%s: process %s (%d, %s) with parents:", msg, p->comm, p->pid, p->updated?"running":"exited");
debug_print_process_and_parents(p, p->stat_collected_usec);
}
static inline void debug_find_lost_child(struct pid_stat *pe, kernel_uint_t lost, int type) {
int found = 0;
struct pid_stat *p = NULL;
for(p = root_of_pids; p ; p = p->next) {
if(p == pe) continue;
switch(type) {
case 1:
if(p->cminflt > lost) {
fprintf(stderr, " > process %d (%s) could use the lost exited child minflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm);
found++;
}
break;
case 2:
if(p->cmajflt > lost) {
fprintf(stderr, " > process %d (%s) could use the lost exited child majflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm);
found++;
}
break;
case 3:
if(p->cutime > lost) {
fprintf(stderr, " > process %d (%s) could use the lost exited child utime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm);
found++;
}
break;
case 4:
if(p->cstime > lost) {
fprintf(stderr, " > process %d (%s) could use the lost exited child stime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm);
found++;
}
break;
case 5:
if(p->cgtime > lost) {
fprintf(stderr, " > process %d (%s) could use the lost exited child gtime " KERNEL_UINT_FORMAT " of process %d (%s)\n", p->pid, p->comm, lost, pe->pid, pe->comm);
found++;
}
break;
}
}
if(!found) {
switch(type) {
case 1:
fprintf(stderr, " > cannot find any process to use the lost exited child minflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm);
break;
case 2:
fprintf(stderr, " > cannot find any process to use the lost exited child majflt " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm);
break;
case 3:
fprintf(stderr, " > cannot find any process to use the lost exited child utime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm);
break;
case 4:
fprintf(stderr, " > cannot find any process to use the lost exited child stime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm);
break;
case 5:
fprintf(stderr, " > cannot find any process to use the lost exited child gtime " KERNEL_UINT_FORMAT " of process %d (%s)\n", lost, pe->pid, pe->comm);
break;
}
}
}
static inline kernel_uint_t remove_exited_child_from_parent(kernel_uint_t *field, kernel_uint_t *pfield) {
kernel_uint_t absorbed = 0;
if(*field > *pfield) {
absorbed += *pfield;
*field -= *pfield;
*pfield = 0;
}
else {
absorbed += *field;
*pfield -= *field;
*field = 0;
}
return absorbed;
}
static inline void process_exited_processes() {
struct pid_stat *p;
for(p = root_of_pids; p ; p = p->next) {
if(p->updated || !p->stat_collected_usec)
continue;
kernel_uint_t utime = (p->utime_raw + p->cutime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec);
kernel_uint_t stime = (p->stime_raw + p->cstime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec);
kernel_uint_t gtime = (p->gtime_raw + p->cgtime_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec);
kernel_uint_t minflt = (p->minflt_raw + p->cminflt_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec);
kernel_uint_t majflt = (p->majflt_raw + p->cmajflt_raw) * (USEC_PER_SEC * RATES_DETAIL) / (p->stat_collected_usec - p->last_stat_collected_usec);
if(utime + stime + gtime + minflt + majflt == 0)
continue;
if(unlikely(debug_enabled)) {
debug_log("Absorb %s (%d %s total resources: utime=" KERNEL_UINT_FORMAT " stime=" KERNEL_UINT_FORMAT " gtime=" KERNEL_UINT_FORMAT " minflt=" KERNEL_UINT_FORMAT " majflt=" KERNEL_UINT_FORMAT ")"
, p->comm
, p->pid
, p->updated?"running":"exited"
, utime
, stime
, gtime
, minflt
, majflt
);
debug_print_process_tree(p, "Searching parents");
}
struct pid_stat *pp;
for(pp = p->parent; pp ; pp = pp->parent) {
if(!pp->updated) continue;
kernel_uint_t absorbed;
absorbed = remove_exited_child_from_parent(&utime, &pp->cutime);
if(unlikely(debug_enabled && absorbed))
debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " utime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, utime);
absorbed = remove_exited_child_from_parent(&stime, &pp->cstime);
if(unlikely(debug_enabled && absorbed))
debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " stime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, stime);
absorbed = remove_exited_child_from_parent(&gtime, &pp->cgtime);
if(unlikely(debug_enabled && absorbed))
debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " gtime (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, gtime);
absorbed = remove_exited_child_from_parent(&minflt, &pp->cminflt);
if(unlikely(debug_enabled && absorbed))
debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " minflt (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, minflt);
absorbed = remove_exited_child_from_parent(&majflt, &pp->cmajflt);
if(unlikely(debug_enabled && absorbed))
debug_log(" > process %s (%d %s) absorbed " KERNEL_UINT_FORMAT " majflt (remaining: " KERNEL_UINT_FORMAT ")", pp->comm, pp->pid, pp->updated?"running":"exited", absorbed, majflt);
}
if(unlikely(utime + stime + gtime + minflt + majflt > 0)) {
if(unlikely(debug_enabled)) {
if(utime) debug_find_lost_child(p, utime, 3);
if(stime) debug_find_lost_child(p, stime, 4);
if(gtime) debug_find_lost_child(p, gtime, 5);
if(minflt) debug_find_lost_child(p, minflt, 1);
if(majflt) debug_find_lost_child(p, majflt, 2);
}
p->keep = true;
debug_log(" > remaining resources - KEEP - for another loop: %s (%d %s total resources: utime=" KERNEL_UINT_FORMAT " stime=" KERNEL_UINT_FORMAT " gtime=" KERNEL_UINT_FORMAT " minflt=" KERNEL_UINT_FORMAT " majflt=" KERNEL_UINT_FORMAT ")"
, p->comm
, p->pid
, p->updated?"running":"exited"
, utime
, stime
, gtime
, minflt
, majflt
);
for(pp = p->parent; pp ; pp = pp->parent) {
if(pp->updated) break;
pp->keep = true;
debug_log(" > - KEEP - parent for another loop: %s (%d %s)"
, pp->comm
, pp->pid
, pp->updated?"running":"exited"
);
}
p->utime_raw = utime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL);
p->stime_raw = stime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL);
p->gtime_raw = gtime * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL);
p->minflt_raw = minflt * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL);
p->majflt_raw = majflt * (p->stat_collected_usec - p->last_stat_collected_usec) / (USEC_PER_SEC * RATES_DETAIL);
p->cutime_raw = p->cstime_raw = p->cgtime_raw = p->cminflt_raw = p->cmajflt_raw = 0;
debug_log(" ");
}
else
debug_log(" > totally absorbed - DONE - %s (%d %s)"
, p->comm
, p->pid
, p->updated?"running":"exited"
);
}
}
static inline void link_all_processes_to_their_parents(void) {
struct pid_stat *p, *pp;
// link all children to their parents
// and update children count on parents
for(p = root_of_pids; p ; p = p->next) {
// for each process found
p->sortlist = 0;
p->parent = NULL;
if(unlikely(!p->ppid)) {
//unnecessary code from apps_plugin.c
//p->parent = NULL;
continue;
}
pp = all_pids[p->ppid];
if(likely(pp)) {
p->parent = pp;
pp->children_count++;
if(unlikely(debug_enabled || (p->target && p->target->debug_enabled)))
debug_log_int("child %d (%s, %s) on target '%s' has parent %d (%s, %s). Parent: utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", gtime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", cgtime=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT "", p->pid, p->comm, p->updated?"running":"exited", (p->target)?p->target->name:"UNSET", pp->pid, pp->comm, pp->updated?"running":"exited", pp->utime, pp->stime, pp->gtime, pp->minflt, pp->majflt, pp->cutime, pp->cstime, pp->cgtime, pp->cminflt, pp->cmajflt);
}
else {
p->parent = NULL;
netdata_log_error("pid %d %s states parent %d, but the later does not exist.", p->pid, p->comm, p->ppid);
}
}
}
// ----------------------------------------------------------------------------
// 1. read all files in /proc
// 2. for each numeric directory:
// i. read /proc/pid/stat
// ii. read /proc/pid/status
// iii. read /proc/pid/io (requires root access)
// iii. read the entries in directory /proc/pid/fd (requires root access)
// for each entry:
// a. find or create a struct file_descriptor
// b. cleanup any old/unused file_descriptors
// after all these, some pids may be linked to targets, while others may not
// in case of errors, only 1 every 1000 errors is printed
// to avoid filling up all disk space
// if debug is enabled, all errors are printed
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
static int compar_pid(const void *pid1, const void *pid2) {
struct pid_stat *p1 = all_pids[*((pid_t *)pid1)];
struct pid_stat *p2 = all_pids[*((pid_t *)pid2)];
if(p1->sortlist > p2->sortlist)
return -1;
else
return 1;
}
#endif
static inline int collect_data_for_pid(pid_t pid, void *ptr) {
if(unlikely(pid < 0 || pid > pid_max)) {
netdata_log_error("Invalid pid %d read (expected %d to %d). Ignoring process.", pid, 0, pid_max);
return 0;
}
struct pid_stat *p = get_pid_entry(pid);
if(unlikely(!p || p->read)) return 0;
p->read = true;
// debug_log("Reading process %d (%s), sortlist %d", p->pid, p->comm, p->sortlist);
// --------------------------------------------------------------------
// /proc/<pid>/stat
if(unlikely(!managed_log(p, PID_LOG_STAT, read_proc_pid_stat(p, ptr))))
// there is no reason to proceed if we cannot get its status
return 0;
// check its parent pid
if(unlikely(p->ppid < 0 || p->ppid > pid_max)) {
netdata_log_error("Pid %d (command '%s') states invalid parent pid %d. Using 0.", pid, p->comm, p->ppid);
p->ppid = 0;
}
// --------------------------------------------------------------------
// /proc/<pid>/io
managed_log(p, PID_LOG_IO, read_proc_pid_io(p, ptr));
// --------------------------------------------------------------------
// /proc/<pid>/status
if(unlikely(!managed_log(p, PID_LOG_STATUS, read_proc_pid_status(p, ptr))))
// there is no reason to proceed if we cannot get its status
return 0;
// --------------------------------------------------------------------
// /proc/<pid>/fd
if(enable_file_charts) {
managed_log(p, PID_LOG_FDS, read_pid_file_descriptors(p, ptr));
managed_log(p, PID_LOG_LIMITS, read_proc_pid_limits(p, ptr));
}
// --------------------------------------------------------------------
// done!
if(unlikely(debug_enabled && include_exited_childs && all_pids_count && p->ppid && all_pids[p->ppid] && !all_pids[p->ppid]->read))
debug_log("Read process %d (%s) sortlisted %d, but its parent %d (%s) sortlisted %d, is not read", p->pid, p->comm, p->sortlist, all_pids[p->ppid]->pid, all_pids[p->ppid]->comm, all_pids[p->ppid]->sortlist);
// mark it as updated
p->updated = true;
p->keep = false;
p->keeploops = 0;
return 1;
}
static int collect_data_for_all_processes(void) {
struct pid_stat *p = NULL;
#ifndef __FreeBSD__
// clear process state counter
memset(proc_state_count, 0, sizeof proc_state_count);
#else
int i, procnum;
static size_t procbase_size = 0;
static struct kinfo_proc *procbase = NULL;
size_t new_procbase_size;
int mib[3] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC };
if (unlikely(sysctl(mib, 3, NULL, &new_procbase_size, NULL, 0))) {
netdata_log_error("sysctl error: Can't get processes data size");
return 0;
}
// give it some air for processes that may be started
// during this little time.
new_procbase_size += 100 * sizeof(struct kinfo_proc);
// increase the buffer if needed
if(new_procbase_size > procbase_size) {
procbase_size = new_procbase_size;
procbase = reallocz(procbase, procbase_size);
}
// sysctl() gets from new_procbase_size the buffer size
// and also returns to it the amount of data filled in
new_procbase_size = procbase_size;
// get the processes from the system
if (unlikely(sysctl(mib, 3, procbase, &new_procbase_size, NULL, 0))) {
netdata_log_error("sysctl error: Can't get processes data");
return 0;
}
// based on the amount of data filled in
// calculate the number of processes we got
procnum = new_procbase_size / sizeof(struct kinfo_proc);
#endif
if(all_pids_count) {
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
size_t slc = 0;
#endif
for(p = root_of_pids; p ; p = p->next) {
p->read = false; // mark it as not read, so that collect_data_for_pid() will read it
p->updated = false;
p->merged = false;
p->children_count = 0;
p->parent = NULL;
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
all_pids_sortlist[slc++] = p->pid;
#endif
}
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
if(unlikely(slc != all_pids_count)) {
netdata_log_error("Internal error: I was thinking I had %zu processes in my arrays, but it seems there are %zu.", all_pids_count, slc);
all_pids_count = slc;
}
if(include_exited_childs) {
// Read parents before childs
// This is needed to prevent a situation where
// a child is found running, but until we read
// its parent, it has exited and its parent
// has accumulated its resources.
qsort((void *)all_pids_sortlist, (size_t)all_pids_count, sizeof(pid_t), compar_pid);
// we forward read all running processes
// collect_data_for_pid() is smart enough,
// not to read the same pid twice per iteration
for(slc = 0; slc < all_pids_count; slc++) {
collect_data_for_pid(all_pids_sortlist[slc], NULL);
}
}
#endif
}
#ifdef __FreeBSD__
for (i = 0 ; i < procnum ; ++i) {
pid_t pid = procbase[i].ki_pid;
collect_data_for_pid(pid, &procbase[i]);
}
#else
static char uptime_filename[FILENAME_MAX + 1] = "";
if(*uptime_filename == '\0')
snprintfz(uptime_filename, FILENAME_MAX, "%s/proc/uptime", netdata_configured_host_prefix);
global_uptime = (kernel_uint_t)(uptime_msec(uptime_filename) / MSEC_PER_SEC);
char dirname[FILENAME_MAX + 1];
snprintfz(dirname, FILENAME_MAX, "%s/proc", netdata_configured_host_prefix);
DIR *dir = opendir(dirname);
if(!dir) return 0;
struct dirent *de = NULL;
while((de = readdir(dir))) {
char *endptr = de->d_name;
if(unlikely(de->d_type != DT_DIR || de->d_name[0] < '0' || de->d_name[0] > '9'))
continue;
pid_t pid = (pid_t) strtoul(de->d_name, &endptr, 10);
// make sure we read a valid number
if(unlikely(endptr == de->d_name || *endptr != '\0'))
continue;
collect_data_for_pid(pid, NULL);
}
closedir(dir);
#endif
if(!all_pids_count)
return 0;
// we need /proc/stat to normalize the cpu consumption of the exited childs
read_global_time();
// build the process tree
link_all_processes_to_their_parents();
// normally this is done
// however we may have processes exited while we collected values
// so let's find the exited ones
// we do this by collecting the ownership of process
// if we manage to get the ownership, the process still runs
process_exited_processes();
return 1;
}
// ----------------------------------------------------------------------------
// update statistics on the targets
// 1. link all childs to their parents
// 2. go from bottom to top, marking as merged all childs to their parents
// this step links all parents without a target to the child target, if any
// 3. link all top level processes (the ones not merged) to the default target
// 4. go from top to bottom, linking all childs without a target, to their parent target
// after this step, all processes have a target
// [5. for each killed pid (updated = 0), remove its usage from its target]
// 6. zero all apps_groups_targets
// 7. concentrate all values on the apps_groups_targets
// 8. remove all killed processes
// 9. find the unique file count for each target
// check: update_apps_groups_statistics()
static void cleanup_exited_pids(void) {
size_t c;
struct pid_stat *p = NULL;
for(p = root_of_pids; p ;) {
if(!p->updated && (!p->keep || p->keeploops > 0)) {
if(unlikely(debug_enabled && (p->keep || p->keeploops)))
debug_log(" > CLEANUP cannot keep exited process %d (%s) anymore - removing it.", p->pid, p->comm);
for(c = 0; c < p->fds_size; c++)
if(p->fds[c].fd > 0) {
file_descriptor_not_used(p->fds[c].fd);
clear_pid_fd(&p->fds[c]);
}
pid_t r = p->pid;
p = p->next;
del_pid_entry(r);
}
else {
if(unlikely(p->keep)) p->keeploops++;
p->keep = false;
p = p->next;
}
}
}
static void apply_apps_groups_targets_inheritance(void) {
struct pid_stat *p = NULL;
// children that do not have a target
// inherit their target from their parent
int found = 1, loops = 0;
while(found) {
if(unlikely(debug_enabled)) loops++;
found = 0;
for(p = root_of_pids; p ; p = p->next) {
// if this process does not have a target,
// and it has a parent
// and its parent has a target
// then, set the parent's target to this process
if(unlikely(!p->target && p->parent && p->parent->target)) {
p->target = p->parent->target;
found++;
if(debug_enabled || (p->target && p->target->debug_enabled))
debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its parent %d (%s).", p->target->name, p->pid, p->comm, p->parent->pid, p->parent->comm);
}
}
}
// find all the procs with 0 childs and merge them to their parents
// repeat, until nothing more can be done.
int sortlist = 1;
found = 1;
while(found) {
if(unlikely(debug_enabled)) loops++;
found = 0;
for(p = root_of_pids; p ; p = p->next) {
if(unlikely(!p->sortlist && !p->children_count))
p->sortlist = sortlist++;
if(unlikely(
!p->children_count // if this process does not have any children
&& !p->merged // and is not already merged
&& p->parent // and has a parent
&& p->parent->children_count // and its parent has children
// and the target of this process and its parent is the same,
// or the parent does not have a target
&& (p->target == p->parent->target || !p->parent->target)
&& p->ppid != INIT_PID // and its parent is not init
)) {
// mark it as merged
p->parent->children_count--;
p->merged = true;
// the parent inherits the child's target, if it does not have a target itself
if(unlikely(p->target && !p->parent->target)) {
p->parent->target = p->target;
if(debug_enabled || (p->target && p->target->debug_enabled))
debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its child %d (%s).", p->target->name, p->parent->pid, p->parent->comm, p->pid, p->comm);
}
found++;
}
}
debug_log("TARGET INHERITANCE: merged %d processes", found);
}
// init goes always to default target
if(all_pids[INIT_PID] && !all_pids[INIT_PID]->matched_by_config)
all_pids[INIT_PID]->target = apps_groups_default_target;
// pid 0 goes always to default target
if(all_pids[0] && !all_pids[INIT_PID]->matched_by_config)
all_pids[0]->target = apps_groups_default_target;
// give a default target on all top level processes
if(unlikely(debug_enabled)) loops++;
for(p = root_of_pids; p ; p = p->next) {
// if the process is not merged itself
// then it is a top level process
if(unlikely(!p->merged && !p->target))
p->target = apps_groups_default_target;
// make sure all processes have a sortlist
if(unlikely(!p->sortlist))
p->sortlist = sortlist++;
}
if(all_pids[1])
all_pids[1]->sortlist = sortlist++;
// give a target to all merged child processes
found = 1;
while(found) {
if(unlikely(debug_enabled)) loops++;
found = 0;
for(p = root_of_pids; p ; p = p->next) {
if(unlikely(!p->target && p->merged && p->parent && p->parent->target)) {
p->target = p->parent->target;
found++;
if(debug_enabled || (p->target && p->target->debug_enabled))
debug_log_int("TARGET INHERITANCE: %s is inherited by %d (%s) from its parent %d (%s) at phase 2.", p->target->name, p->pid, p->comm, p->parent->pid, p->parent->comm);
}
}
}
debug_log("apply_apps_groups_targets_inheritance() made %d loops on the process tree", loops);
}
static size_t zero_all_targets(struct target *root) {
struct target *w;
size_t count = 0;
for (w = root; w ; w = w->next) {
count++;
w->minflt = 0;
w->majflt = 0;
w->utime = 0;
w->stime = 0;
w->gtime = 0;
w->cminflt = 0;
w->cmajflt = 0;
w->cutime = 0;
w->cstime = 0;
w->cgtime = 0;
w->num_threads = 0;
// w->rss = 0;
w->processes = 0;
w->status_vmsize = 0;
w->status_vmrss = 0;
w->status_vmshared = 0;
w->status_rssfile = 0;
w->status_rssshmem = 0;
w->status_vmswap = 0;
w->status_voluntary_ctxt_switches = 0;
w->status_nonvoluntary_ctxt_switches = 0;
w->io_logical_bytes_read = 0;
w->io_logical_bytes_written = 0;
w->io_read_calls = 0;
w->io_write_calls = 0;
w->io_storage_bytes_read = 0;
w->io_storage_bytes_written = 0;
w->io_cancelled_write_bytes = 0;
// zero file counters
if(w->target_fds) {
memset(w->target_fds, 0, sizeof(int) * w->target_fds_size);
w->openfds.files = 0;
w->openfds.pipes = 0;
w->openfds.sockets = 0;
w->openfds.inotifies = 0;
w->openfds.eventfds = 0;
w->openfds.timerfds = 0;
w->openfds.signalfds = 0;
w->openfds.eventpolls = 0;
w->openfds.other = 0;
w->max_open_files_percent = 0.0;
}
w->collected_starttime = 0;
w->uptime_min = 0;
w->uptime_sum = 0;
w->uptime_max = 0;
if(unlikely(w->root_pid)) {
struct pid_on_target *pid_on_target_to_free, *pid_on_target = w->root_pid;
while(pid_on_target) {
pid_on_target_to_free = pid_on_target;
pid_on_target = pid_on_target->next;
freez(pid_on_target_to_free);
}
w->root_pid = NULL;
}
}
return count;
}
static inline void reallocate_target_fds(struct target *w) {
if(unlikely(!w))
return;
if(unlikely(!w->target_fds || w->target_fds_size < all_files_size)) {
w->target_fds = reallocz(w->target_fds, sizeof(int) * all_files_size);
memset(&w->target_fds[w->target_fds_size], 0, sizeof(int) * (all_files_size - w->target_fds_size));
w->target_fds_size = all_files_size;
}
}
static void aggregage_fd_type_on_openfds(FD_FILETYPE type, struct openfds *openfds) {
switch(type) {
case FILETYPE_FILE:
openfds->files++;
break;
case FILETYPE_PIPE:
openfds->pipes++;
break;
case FILETYPE_SOCKET:
openfds->sockets++;
break;
case FILETYPE_INOTIFY:
openfds->inotifies++;
break;
case FILETYPE_EVENTFD:
openfds->eventfds++;
break;
case FILETYPE_TIMERFD:
openfds->timerfds++;
break;
case FILETYPE_SIGNALFD:
openfds->signalfds++;
break;
case FILETYPE_EVENTPOLL:
openfds->eventpolls++;
break;
case FILETYPE_OTHER:
openfds->other++;
break;
}
}
static inline void aggregate_fd_on_target(int fd, struct target *w) {
if(unlikely(!w))
return;
if(unlikely(w->target_fds[fd])) {
// it is already aggregated
// just increase its usage counter
w->target_fds[fd]++;
return;
}
// increase its usage counter
// so that we will not add it again
w->target_fds[fd]++;
aggregage_fd_type_on_openfds(all_files[fd].type, &w->openfds);
}
static inline void aggregate_pid_fds_on_targets(struct pid_stat *p) {
if(unlikely(!p->updated)) {
// the process is not running
return;
}
struct target *w = p->target, *u = p->user_target, *g = p->group_target;
reallocate_target_fds(w);
reallocate_target_fds(u);
reallocate_target_fds(g);
p->openfds.files = 0;
p->openfds.pipes = 0;
p->openfds.sockets = 0;
p->openfds.inotifies = 0;
p->openfds.eventfds = 0;
p->openfds.timerfds = 0;
p->openfds.signalfds = 0;
p->openfds.eventpolls = 0;
p->openfds.other = 0;
long currentfds = 0;
size_t c, size = p->fds_size;
struct pid_fd *fds = p->fds;
for(c = 0; c < size ;c++) {
int fd = fds[c].fd;
if(likely(fd <= 0 || fd >= all_files_size))
continue;
currentfds++;
aggregage_fd_type_on_openfds(all_files[fd].type, &p->openfds);
aggregate_fd_on_target(fd, w);
aggregate_fd_on_target(fd, u);
aggregate_fd_on_target(fd, g);
}
}
static inline void aggregate_pid_on_target(struct target *w, struct pid_stat *p, struct target *o) {
(void)o;
if(unlikely(!p->updated)) {
// the process is not running
return;
}
if(unlikely(!w)) {
netdata_log_error("pid %d %s was left without a target!", p->pid, p->comm);
return;
}
if(p->openfds_limits_percent > w->max_open_files_percent)
w->max_open_files_percent = p->openfds_limits_percent;
w->cutime += p->cutime;
w->cstime += p->cstime;
w->cgtime += p->cgtime;
w->cminflt += p->cminflt;
w->cmajflt += p->cmajflt;
w->utime += p->utime;
w->stime += p->stime;
w->gtime += p->gtime;
w->minflt += p->minflt;
w->majflt += p->majflt;
// w->rss += p->rss;
w->status_vmsize += p->status_vmsize;
w->status_vmrss += p->status_vmrss;
w->status_vmshared += p->status_vmshared;
w->status_rssfile += p->status_rssfile;
w->status_rssshmem += p->status_rssshmem;
w->status_vmswap += p->status_vmswap;
w->status_voluntary_ctxt_switches += p->status_voluntary_ctxt_switches;
w->status_nonvoluntary_ctxt_switches += p->status_nonvoluntary_ctxt_switches;
w->io_logical_bytes_read += p->io_logical_bytes_read;
w->io_logical_bytes_written += p->io_logical_bytes_written;
w->io_read_calls += p->io_read_calls;
w->io_write_calls += p->io_write_calls;
w->io_storage_bytes_read += p->io_storage_bytes_read;
w->io_storage_bytes_written += p->io_storage_bytes_written;
w->io_cancelled_write_bytes += p->io_cancelled_write_bytes;
w->processes++;
w->num_threads += p->num_threads;
if(!w->collected_starttime || p->collected_starttime < w->collected_starttime) w->collected_starttime = p->collected_starttime;
if(!w->uptime_min || p->uptime < w->uptime_min) w->uptime_min = p->uptime;
w->uptime_sum += p->uptime;
if(!w->uptime_max || w->uptime_max < p->uptime) w->uptime_max = p->uptime;
if(unlikely(debug_enabled || w->debug_enabled)) {
debug_log_int("aggregating '%s' pid %d on target '%s' utime=" KERNEL_UINT_FORMAT ", stime=" KERNEL_UINT_FORMAT ", gtime=" KERNEL_UINT_FORMAT ", cutime=" KERNEL_UINT_FORMAT ", cstime=" KERNEL_UINT_FORMAT ", cgtime=" KERNEL_UINT_FORMAT ", minflt=" KERNEL_UINT_FORMAT ", majflt=" KERNEL_UINT_FORMAT ", cminflt=" KERNEL_UINT_FORMAT ", cmajflt=" KERNEL_UINT_FORMAT "", p->comm, p->pid, w->name, p->utime, p->stime, p->gtime, p->cutime, p->cstime, p->cgtime, p->minflt, p->majflt, p->cminflt, p->cmajflt);
struct pid_on_target *pid_on_target = mallocz(sizeof(struct pid_on_target));
pid_on_target->pid = p->pid;
pid_on_target->next = w->root_pid;
w->root_pid = pid_on_target;
}
}
static inline void post_aggregate_targets(struct target *root) {
struct target *w;
for (w = root; w ; w = w->next) {
if(w->collected_starttime) {
if (!w->starttime || w->collected_starttime < w->starttime) {
w->starttime = w->collected_starttime;
}
} else {
w->starttime = 0;
}
}
}
static void calculate_netdata_statistics(void) {
apply_apps_groups_targets_inheritance();
zero_all_targets(users_root_target);
zero_all_targets(groups_root_target);
apps_groups_targets_count = zero_all_targets(apps_groups_root_target);
// this has to be done, before the cleanup
struct pid_stat *p = NULL;
struct target *w = NULL, *o = NULL;
// concentrate everything on the targets
for(p = root_of_pids; p ; p = p->next) {
// --------------------------------------------------------------------
// apps_groups target
aggregate_pid_on_target(p->target, p, NULL);
// --------------------------------------------------------------------
// user target
o = p->user_target;
if(likely(p->user_target && p->user_target->uid == p->uid))
w = p->user_target;
else {
if(unlikely(debug_enabled && p->user_target))
debug_log("pid %d (%s) switched user from %u (%s) to %u.", p->pid, p->comm, p->user_target->uid, p->user_target->name, p->uid);
w = p->user_target = get_users_target(p->uid);
}
aggregate_pid_on_target(w, p, o);
// --------------------------------------------------------------------
// user group target
o = p->group_target;
if(likely(p->group_target && p->group_target->gid == p->gid))
w = p->group_target;
else {
if(unlikely(debug_enabled && p->group_target))
debug_log("pid %d (%s) switched group from %u (%s) to %u.", p->pid, p->comm, p->group_target->gid, p->group_target->name, p->gid);
w = p->group_target = get_groups_target(p->gid);
}
aggregate_pid_on_target(w, p, o);
// --------------------------------------------------------------------
// aggregate all file descriptors
if(enable_file_charts)
aggregate_pid_fds_on_targets(p);
}
post_aggregate_targets(apps_groups_root_target);
post_aggregate_targets(users_root_target);
post_aggregate_targets(groups_root_target);
cleanup_exited_pids();
}
// ----------------------------------------------------------------------------
// update chart dimensions
static inline void send_BEGIN(const char *type, const char *name,const char *metric, usec_t usec) {
fprintf(stdout, "BEGIN %s.%s_%s %" PRIu64 "\n", type, name, metric, usec);
}
static inline void send_SET(const char *name, kernel_uint_t value) {
fprintf(stdout, "SET %s = " KERNEL_UINT_FORMAT "\n", name, value);
}
static inline void send_END(void) {
fprintf(stdout, "END\n\n");
}
void send_resource_usage_to_netdata(usec_t dt) {
static struct timeval last = { 0, 0 };
static struct rusage me_last;
struct timeval now;
struct rusage me;
usec_t cpuuser;
usec_t cpusyst;
if(!last.tv_sec) {
now_monotonic_timeval(&last);
getrusage(RUSAGE_SELF, &me_last);
cpuuser = 0;
cpusyst = 0;
}
else {
now_monotonic_timeval(&now);
getrusage(RUSAGE_SELF, &me);
cpuuser = me.ru_utime.tv_sec * USEC_PER_SEC + me.ru_utime.tv_usec;
cpusyst = me.ru_stime.tv_sec * USEC_PER_SEC + me.ru_stime.tv_usec;
memmove(&last, &now, sizeof(struct timeval));
memmove(&me_last, &me, sizeof(struct rusage));
}
static char created_charts = 0;
if(unlikely(!created_charts)) {
created_charts = 1;
fprintf(stdout,
"CHART netdata.apps_cpu '' 'Apps Plugin CPU' 'milliseconds/s' apps.plugin netdata.apps_cpu stacked 140000 %1$d\n"
"DIMENSION user '' incremental 1 1000\n"
"DIMENSION system '' incremental 1 1000\n"
"CHART netdata.apps_sizes '' 'Apps Plugin Files' 'files/s' apps.plugin netdata.apps_sizes line 140001 %1$d\n"
"DIMENSION calls '' incremental 1 1\n"
"DIMENSION files '' incremental 1 1\n"
"DIMENSION filenames '' incremental 1 1\n"
"DIMENSION inode_changes '' incremental 1 1\n"
"DIMENSION link_changes '' incremental 1 1\n"
"DIMENSION pids '' absolute 1 1\n"
"DIMENSION fds '' absolute 1 1\n"
"DIMENSION targets '' absolute 1 1\n"
"DIMENSION new_pids 'new pids' incremental 1 1\n"
, update_every
);
fprintf(stdout,
"CHART netdata.apps_fix '' 'Apps Plugin Normalization Ratios' 'percentage' apps.plugin netdata.apps_fix line 140002 %1$d\n"
"DIMENSION utime '' absolute 1 %2$llu\n"
"DIMENSION stime '' absolute 1 %2$llu\n"
"DIMENSION gtime '' absolute 1 %2$llu\n"
"DIMENSION minflt '' absolute 1 %2$llu\n"
"DIMENSION majflt '' absolute 1 %2$llu\n"
, update_every
, RATES_DETAIL
);
if(include_exited_childs)
fprintf(stdout,
"CHART netdata.apps_children_fix '' 'Apps Plugin Exited Children Normalization Ratios' 'percentage' apps.plugin netdata.apps_children_fix line 140003 %1$d\n"
"DIMENSION cutime '' absolute 1 %2$llu\n"
"DIMENSION cstime '' absolute 1 %2$llu\n"
"DIMENSION cgtime '' absolute 1 %2$llu\n"
"DIMENSION cminflt '' absolute 1 %2$llu\n"
"DIMENSION cmajflt '' absolute 1 %2$llu\n"
, update_every
, RATES_DETAIL
);
}
fprintf(stdout,
"BEGIN netdata.apps_cpu %"PRIu64"\n"
"SET user = %"PRIu64"\n"
"SET system = %"PRIu64"\n"
"END\n"
"BEGIN netdata.apps_sizes %"PRIu64"\n"
"SET calls = %zu\n"
"SET files = %zu\n"
"SET filenames = %zu\n"
"SET inode_changes = %zu\n"
"SET link_changes = %zu\n"
"SET pids = %zu\n"
"SET fds = %d\n"
"SET targets = %zu\n"
"SET new_pids = %zu\n"
"END\n"
, dt
, cpuuser
, cpusyst
, dt
, calls_counter
, file_counter
, filenames_allocated_counter
, inodes_changed_counter
, links_changed_counter
, all_pids_count
, all_files_len
, apps_groups_targets_count
, targets_assignment_counter
);
fprintf(stdout,
"BEGIN netdata.apps_fix %"PRIu64"\n"
"SET utime = %u\n"
"SET stime = %u\n"
"SET gtime = %u\n"
"SET minflt = %u\n"
"SET majflt = %u\n"
"END\n"
, dt
, (unsigned int)(utime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(stime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(gtime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(minflt_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(majflt_fix_ratio * 100 * RATES_DETAIL)
);
if(include_exited_childs)
fprintf(stdout,
"BEGIN netdata.apps_children_fix %"PRIu64"\n"
"SET cutime = %u\n"
"SET cstime = %u\n"
"SET cgtime = %u\n"
"SET cminflt = %u\n"
"SET cmajflt = %u\n"
"END\n"
, dt
, (unsigned int)(cutime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(cstime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(cgtime_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(cminflt_fix_ratio * 100 * RATES_DETAIL)
, (unsigned int)(cmajflt_fix_ratio * 100 * RATES_DETAIL)
);
}
static void normalize_utilization(struct target *root) {
struct target *w;
// childs processing introduces spikes
// here we try to eliminate them by disabling childs processing either for specific dimensions
// or entirely. Of course, either way, we disable it just a single iteration.
kernel_uint_t max_time = get_system_cpus() * time_factor * RATES_DETAIL;
kernel_uint_t utime = 0, cutime = 0, stime = 0, cstime = 0, gtime = 0, cgtime = 0, minflt = 0, cminflt = 0, majflt = 0, cmajflt = 0;
if(global_utime > max_time) global_utime = max_time;
if(global_stime > max_time) global_stime = max_time;
if(global_gtime > max_time) global_gtime = max_time;
for(w = root; w ; w = w->next) {
if(w->target || (!w->processes && !w->exposed)) continue;
utime += w->utime;
stime += w->stime;
gtime += w->gtime;
cutime += w->cutime;
cstime += w->cstime;
cgtime += w->cgtime;
minflt += w->minflt;
majflt += w->majflt;
cminflt += w->cminflt;
cmajflt += w->cmajflt;
}
if(global_utime || global_stime || global_gtime) {
if(global_utime + global_stime + global_gtime > utime + cutime + stime + cstime + gtime + cgtime) {
// everything we collected fits
utime_fix_ratio =
stime_fix_ratio =
gtime_fix_ratio =
cutime_fix_ratio =
cstime_fix_ratio =
cgtime_fix_ratio = 1.0; //(NETDATA_DOUBLE)(global_utime + global_stime) / (NETDATA_DOUBLE)(utime + cutime + stime + cstime);
}
else if((global_utime + global_stime > utime + stime) && (cutime || cstime)) {
// children resources are too high
// lower only the children resources
utime_fix_ratio =
stime_fix_ratio =
gtime_fix_ratio = 1.0;
cutime_fix_ratio =
cstime_fix_ratio =
cgtime_fix_ratio = (NETDATA_DOUBLE)((global_utime + global_stime) - (utime + stime)) / (NETDATA_DOUBLE)(cutime + cstime);
}
else if(utime || stime) {
// even running processes are unrealistic
// zero the children resources
// lower the running processes resources
utime_fix_ratio =
stime_fix_ratio =
gtime_fix_ratio = (NETDATA_DOUBLE)(global_utime + global_stime) / (NETDATA_DOUBLE)(utime + stime);
cutime_fix_ratio =
cstime_fix_ratio =
cgtime_fix_ratio = 0.0;
}
else {
utime_fix_ratio =
stime_fix_ratio =
gtime_fix_ratio =
cutime_fix_ratio =
cstime_fix_ratio =
cgtime_fix_ratio = 0.0;
}
}
else {
utime_fix_ratio =
stime_fix_ratio =
gtime_fix_ratio =
cutime_fix_ratio =
cstime_fix_ratio =
cgtime_fix_ratio = 0.0;
}
if(utime_fix_ratio > 1.0) utime_fix_ratio = 1.0;
if(cutime_fix_ratio > 1.0) cutime_fix_ratio = 1.0;
if(stime_fix_ratio > 1.0) stime_fix_ratio = 1.0;
if(cstime_fix_ratio > 1.0) cstime_fix_ratio = 1.0;
if(gtime_fix_ratio > 1.0) gtime_fix_ratio = 1.0;
if(cgtime_fix_ratio > 1.0) cgtime_fix_ratio = 1.0;
// if(utime_fix_ratio < 0.0) utime_fix_ratio = 0.0;
// if(cutime_fix_ratio < 0.0) cutime_fix_ratio = 0.0;
// if(stime_fix_ratio < 0.0) stime_fix_ratio = 0.0;
// if(cstime_fix_ratio < 0.0) cstime_fix_ratio = 0.0;
// if(gtime_fix_ratio < 0.0) gtime_fix_ratio = 0.0;
// if(cgtime_fix_ratio < 0.0) cgtime_fix_ratio = 0.0;
// TODO
// we use cpu time to normalize page faults
// the problem is that to find the proper max values
// for page faults we have to parse /proc/vmstat
// which is quite big to do it again (netdata does it already)
//
// a better solution could be to somehow have netdata
// do this normalization for us
if(utime || stime || gtime)
majflt_fix_ratio =
minflt_fix_ratio = (NETDATA_DOUBLE)(utime * utime_fix_ratio + stime * stime_fix_ratio + gtime * gtime_fix_ratio) / (NETDATA_DOUBLE)(utime + stime + gtime);
else
minflt_fix_ratio =
majflt_fix_ratio = 1.0;
if(cutime || cstime || cgtime)
cmajflt_fix_ratio =
cminflt_fix_ratio = (NETDATA_DOUBLE)(cutime * cutime_fix_ratio + cstime * cstime_fix_ratio + cgtime * cgtime_fix_ratio) / (NETDATA_DOUBLE)(cutime + cstime + cgtime);
else
cminflt_fix_ratio =
cmajflt_fix_ratio = 1.0;
// the report
debug_log(
"SYSTEM: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " "
"COLLECTED: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " cu=" KERNEL_UINT_FORMAT " cs=" KERNEL_UINT_FORMAT " cg=" KERNEL_UINT_FORMAT " "
"DELTA: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " "
"FIX: u=%0.2f s=%0.2f g=%0.2f cu=%0.2f cs=%0.2f cg=%0.2f "
"FINALLY: u=" KERNEL_UINT_FORMAT " s=" KERNEL_UINT_FORMAT " g=" KERNEL_UINT_FORMAT " cu=" KERNEL_UINT_FORMAT " cs=" KERNEL_UINT_FORMAT " cg=" KERNEL_UINT_FORMAT " "
, global_utime
, global_stime
, global_gtime
, utime
, stime
, gtime
, cutime
, cstime
, cgtime
, utime + cutime - global_utime
, stime + cstime - global_stime
, gtime + cgtime - global_gtime
, utime_fix_ratio
, stime_fix_ratio
, gtime_fix_ratio
, cutime_fix_ratio
, cstime_fix_ratio
, cgtime_fix_ratio
, (kernel_uint_t)(utime * utime_fix_ratio)
, (kernel_uint_t)(stime * stime_fix_ratio)
, (kernel_uint_t)(gtime * gtime_fix_ratio)
, (kernel_uint_t)(cutime * cutime_fix_ratio)
, (kernel_uint_t)(cstime * cstime_fix_ratio)
, (kernel_uint_t)(cgtime * cgtime_fix_ratio)
);
}
static void send_collected_data_to_netdata(struct target *root, const char *type, usec_t dt) {
struct target *w;
for (w = root; w ; w = w->next) {
if (unlikely(!w->exposed))
continue;
send_BEGIN(type, w->clean_name, "processes", dt);
send_SET("processes", w->processes);
send_END();
send_BEGIN(type, w->clean_name, "threads", dt);
send_SET("threads", w->num_threads);
send_END();
if (unlikely(!w->processes && !w->is_other))
continue;
send_BEGIN(type, w->clean_name, "cpu_utilization", dt);
send_SET("user", (kernel_uint_t)(w->utime * utime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cutime * cutime_fix_ratio)) : 0ULL));
send_SET("system", (kernel_uint_t)(w->stime * stime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cstime * cstime_fix_ratio)) : 0ULL));
send_END();
#ifndef __FreeBSD__
if (enable_guest_charts) {
send_BEGIN(type, w->clean_name, "cpu_guest_utilization", dt);
send_SET("guest", (kernel_uint_t)(w->gtime * gtime_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cgtime * cgtime_fix_ratio)) : 0ULL));
send_END();
}
send_BEGIN(type, w->clean_name, "cpu_context_switches", dt);
send_SET("voluntary", w->status_voluntary_ctxt_switches);
send_SET("involuntary", w->status_nonvoluntary_ctxt_switches);
send_END();
send_BEGIN(type, w->clean_name, "mem_private_usage", dt);
send_SET("mem", (w->status_vmrss > w->status_vmshared)?(w->status_vmrss - w->status_vmshared) : 0ULL);
send_END();
#endif
send_BEGIN(type, w->clean_name, "mem_usage", dt);
send_SET("rss", w->status_vmrss);
send_END();
send_BEGIN(type, w->clean_name, "vmem_usage", dt);
send_SET("vmem", w->status_vmsize);
send_END();
send_BEGIN(type, w->clean_name, "mem_page_faults", dt);
send_SET("minor", (kernel_uint_t)(w->minflt * minflt_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cminflt * cminflt_fix_ratio)) : 0ULL));
send_SET("major", (kernel_uint_t)(w->majflt * majflt_fix_ratio) + (include_exited_childs ? ((kernel_uint_t)(w->cmajflt * cmajflt_fix_ratio)) : 0ULL));
send_END();
#ifndef __FreeBSD__
send_BEGIN(type, w->clean_name, "swap_usage", dt);
send_SET("swap", w->status_vmswap);
send_END();
#endif
#ifndef __FreeBSD__
if (w->processes == 0) {
send_BEGIN(type, w->clean_name, "uptime", dt);
send_SET("uptime", 0);
send_END();
if (enable_detailed_uptime_charts) {
send_BEGIN(type, w->clean_name, "uptime_summary", dt);
send_SET("min", 0);
send_SET("avg", 0);
send_SET("max", 0);
send_END();
}
} else {
send_BEGIN(type, w->clean_name, "uptime", dt);
send_SET("uptime", (global_uptime > w->starttime) ? (global_uptime - w->starttime) : 0);
send_END();
if (enable_detailed_uptime_charts) {
send_BEGIN(type, w->clean_name, "uptime_summary", dt);
send_SET("min", w->uptime_min);
send_SET("avg", w->processes > 0 ? w->uptime_sum / w->processes : 0);
send_SET("max", w->uptime_max);
send_END();
}
}
#endif
send_BEGIN(type, w->clean_name, "disk_physical_io", dt);
send_SET("reads", w->io_storage_bytes_read);
send_SET("writes", w->io_storage_bytes_written);
send_END();
#ifndef __FreeBSD__
send_BEGIN(type, w->clean_name, "disk_logical_io", dt);
send_SET("reads", w->io_logical_bytes_read);
send_SET("writes", w->io_logical_bytes_written);
send_END();
#endif
if (enable_file_charts) {
send_BEGIN(type, w->clean_name, "fds_open_limit", dt);
send_SET("limit", w->max_open_files_percent * 100.0);
send_END();
send_BEGIN(type, w->clean_name, "fds_open", dt);
send_SET("files", w->openfds.files);
send_SET("sockets", w->openfds.sockets);
send_SET("pipes", w->openfds.sockets);
send_SET("inotifies", w->openfds.inotifies);
send_SET("event", w->openfds.eventfds);
send_SET("timer", w->openfds.timerfds);
send_SET("signal", w->openfds.signalfds);
send_SET("eventpolls", w->openfds.eventpolls);
send_SET("other", w->openfds.other);
send_END();
}
}
}
// ----------------------------------------------------------------------------
// generate the charts
static void send_charts_updates_to_netdata(struct target *root, const char *type, const char *lbl_name, const char *title)
{
struct target *w;
if (debug_enabled) {
for (w = root; w; w = w->next) {
if (unlikely(!w->target && w->processes)) {
struct pid_on_target *pid_on_target;
fprintf(stderr, "apps.plugin: target '%s' has aggregated %u process(es):", w->name, w->processes);
for (pid_on_target = w->root_pid; pid_on_target; pid_on_target = pid_on_target->next) {
fprintf(stderr, " %d", pid_on_target->pid);
}
fputc('\n', stderr);
}
}
}
for (w = root; w; w = w->next) {
if (likely(w->exposed || (!w->processes && !w->is_other)))
continue;
w->exposed = 1;
fprintf(stdout, "CHART %s.%s_cpu_utilization '' '%s CPU utilization (100%% = 1 core)' 'percentage' cpu %s.cpu_utilization stacked 20001 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION user '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU);
fprintf(stdout, "DIMENSION system '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU);
#ifndef __FreeBSD__
if (enable_guest_charts) {
fprintf(stdout, "CHART %s.%s_cpu_guest_utilization '' '%s CPU guest utlization (100%% = 1 core)' 'percentage' cpu %s.cpu_guest_utilization line 20005 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION guest '' absolute 1 %llu\n", time_factor * RATES_DETAIL / 100LLU);
}
fprintf(stdout, "CHART %s.%s_cpu_context_switches '' '%s CPU context switches' 'switches/s' cpu %s.cpu_context_switches stacked 20010 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION voluntary '' absolute 1 %llu\n", RATES_DETAIL);
fprintf(stdout, "DIMENSION involuntary '' absolute 1 %llu\n", RATES_DETAIL);
fprintf(stdout, "CHART %s.%s_mem_private_usage '' '%s memory usage without shared' 'MiB' mem %s.mem_private_usage area 20050 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION mem '' absolute %ld %ld\n", 1L, 1024L);
#endif
fprintf(stdout, "CHART %s.%s_mem_usage '' '%s memory RSS usage' 'MiB' mem %s.mem_usage area 20055 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION rss '' absolute %ld %ld\n", 1L, 1024L);
fprintf(stdout, "CHART %s.%s_mem_page_faults '' '%s memory page faults' 'pgfaults/s' mem %s.mem_page_faults stacked 20060 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION major '' absolute 1 %llu\n", RATES_DETAIL);
fprintf(stdout, "DIMENSION minor '' absolute 1 %llu\n", RATES_DETAIL);
fprintf(stdout, "CHART %s.%s_vmem_usage '' '%s virtual memory size' 'MiB' mem %s.vmem_usage line 20065 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION vmem '' absolute %ld %ld\n", 1L, 1024L);
#ifndef __FreeBSD__
fprintf(stdout, "CHART %s.%s_swap_usage '' '%s swap usage' 'MiB' mem %s.swap_usage area 20065 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION swap '' absolute %ld %ld\n", 1L, 1024L);
#endif
#ifndef __FreeBSD__
fprintf(stdout, "CHART %s.%s_disk_physical_io '' '%s disk physical IO' 'KiB/s' disk %s.disk_physical_io area 20100 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", 1024LLU * RATES_DETAIL);
fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", 1024LLU * RATES_DETAIL);
fprintf(stdout, "CHART %s.%s_disk_logical_io '' '%s disk logical IO' 'KiB/s' disk %s.disk_logical_io area 20105 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", 1024LLU * RATES_DETAIL);
fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", 1024LLU * RATES_DETAIL);
#else
fprintf(stdout, "CHART %s.%s_disk_physical_io '' '%s disk physical IO' 'blocks/s' disk %s.disk_physical_block_io area 20100 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION reads '' absolute 1 %llu\n", RATES_DETAIL);
fprintf(stdout, "DIMENSION writes '' absolute -1 %llu\n", RATES_DETAIL);
#endif
fprintf(stdout, "CHART %s.%s_processes '' '%s processes' 'processes' processes %s.processes line 20150 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION processes '' absolute 1 1\n");
fprintf(stdout, "CHART %s.%s_threads '' '%s threads' 'threads' processes %s.threads line 20155 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION threads '' absolute 1 1\n");
if (enable_file_charts) {
fprintf(stdout, "CHART %s.%s_fds_open_limit '' '%s open file descriptors limit' '%%' fds %s.fds_open_limit line 20200 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION limit '' absolute 1 100\n");
fprintf(stdout, "CHART %s.%s_fds_open '' '%s open files descriptors' 'fds' fds %s.fds_open stacked 20210 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION files '' absolute 1 1\n");
fprintf(stdout, "DIMENSION sockets '' absolute 1 1\n");
fprintf(stdout, "DIMENSION pipes '' absolute 1 1\n");
fprintf(stdout, "DIMENSION inotifies '' absolute 1 1\n");
fprintf(stdout, "DIMENSION event '' absolute 1 1\n");
fprintf(stdout, "DIMENSION timer '' absolute 1 1\n");
fprintf(stdout, "DIMENSION signal '' absolute 1 1\n");
fprintf(stdout, "DIMENSION eventpolls '' absolute 1 1\n");
fprintf(stdout, "DIMENSION other '' absolute 1 1\n");
}
#ifndef __FreeBSD__
fprintf(stdout, "CHART %s.%s_uptime '' '%s uptime' 'seconds' uptime %s.uptime line 20250 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION uptime '' absolute 1 1\n");
if (enable_detailed_uptime_charts) {
fprintf(stdout, "CHART %s.%s_uptime_summary '' '%s uptime summary' 'seconds' uptime %s.uptime_summary area 20255 %d\n", type, w->clean_name, title, type, update_every);
fprintf(stdout, "CLABEL '%s' '%s' 1\n", lbl_name, w->name);
fprintf(stdout, "CLABEL_COMMIT\n");
fprintf(stdout, "DIMENSION min '' absolute 1 1\n");
fprintf(stdout, "DIMENSION avg '' absolute 1 1\n");
fprintf(stdout, "DIMENSION max '' absolute 1 1\n");
}
#endif
}
}
#ifndef __FreeBSD__
static void send_proc_states_count(usec_t dt)
{
static bool chart_added = false;
// create chart for count of processes in different states
if (!chart_added) {
fprintf(
stdout,
"CHART system.processes_state '' 'System Processes State' 'processes' processes system.processes_state line %d %d\n",
NETDATA_CHART_PRIO_SYSTEM_PROCESS_STATES,
update_every);
for (proc_state i = PROC_STATUS_RUNNING; i < PROC_STATUS_END; i++) {
fprintf(stdout, "DIMENSION %s '' absolute 1 1\n", proc_states[i]);
}
chart_added = true;
}
// send process state count
fprintf(stdout, "BEGIN system.processes_state %" PRIu64 "\n", dt);
for (proc_state i = PROC_STATUS_RUNNING; i < PROC_STATUS_END; i++) {
send_SET(proc_states[i], proc_state_count[i]);
}
send_END();
}
#endif
// ----------------------------------------------------------------------------
// parse command line arguments
int check_proc_1_io() {
int ret = 0;
procfile *ff = procfile_open("/proc/1/io", NULL, PROCFILE_FLAG_NO_ERROR_ON_FILE_IO);
if(!ff) goto cleanup;
ff = procfile_readall(ff);
if(!ff) goto cleanup;
ret = 1;
cleanup:
procfile_close(ff);
return ret;
}
static void parse_args(int argc, char **argv)
{
int i, freq = 0;
for(i = 1; i < argc; i++) {
if(!freq) {
int n = (int)str2l(argv[i]);
if(n > 0) {
freq = n;
continue;
}
}
if(strcmp("version", argv[i]) == 0 || strcmp("-version", argv[i]) == 0 || strcmp("--version", argv[i]) == 0 || strcmp("-v", argv[i]) == 0 || strcmp("-V", argv[i]) == 0) {
printf("apps.plugin %s\n", VERSION);
exit(0);
}
if(strcmp("test-permissions", argv[i]) == 0 || strcmp("-t", argv[i]) == 0) {
if(!check_proc_1_io()) {
perror("Tried to read /proc/1/io and it failed");
exit(1);
}
printf("OK\n");
exit(0);
}
if(strcmp("debug", argv[i]) == 0) {
debug_enabled = 1;
#ifndef NETDATA_INTERNAL_CHECKS
fprintf(stderr, "apps.plugin has been compiled without debugging\n");
#endif
continue;
}
#ifndef __FreeBSD__
if(strcmp("fds-cache-secs", argv[i]) == 0) {
if(argc <= i + 1) {
fprintf(stderr, "Parameter 'fds-cache-secs' requires a number as argument.\n");
exit(1);
}
i++;
max_fds_cache_seconds = str2i(argv[i]);
if(max_fds_cache_seconds < 0) max_fds_cache_seconds = 0;
continue;
}
#endif
if(strcmp("no-childs", argv[i]) == 0 || strcmp("without-childs", argv[i]) == 0) {
include_exited_childs = 0;
continue;
}
if(strcmp("with-childs", argv[i]) == 0) {
include_exited_childs = 1;
continue;
}
if(strcmp("with-guest", argv[i]) == 0) {
enable_guest_charts = 1;
continue;
}
if(strcmp("no-guest", argv[i]) == 0 || strcmp("without-guest", argv[i]) == 0) {
enable_guest_charts = 0;
continue;
}
if(strcmp("with-files", argv[i]) == 0) {
enable_file_charts = 1;
continue;
}
if(strcmp("no-files", argv[i]) == 0 || strcmp("without-files", argv[i]) == 0) {
enable_file_charts = 0;
continue;
}
if(strcmp("no-users", argv[i]) == 0 || strcmp("without-users", argv[i]) == 0) {
enable_users_charts = 0;
continue;
}
if(strcmp("no-groups", argv[i]) == 0 || strcmp("without-groups", argv[i]) == 0) {
enable_groups_charts = 0;
continue;
}
if(strcmp("with-detailed-uptime", argv[i]) == 0) {
enable_detailed_uptime_charts = 1;
continue;
}
if(strcmp("with-function-cmdline", argv[i]) == 0) {
enable_function_cmdline = 1;
continue;
}
if(strcmp("-h", argv[i]) == 0 || strcmp("--help", argv[i]) == 0) {
fprintf(stderr,
"\n"
" netdata apps.plugin %s\n"
" Copyright (C) 2016-2017 Costa Tsaousis <costa@tsaousis.gr>\n"
" Released under GNU General Public License v3 or later.\n"
" All rights reserved.\n"
"\n"
" This program is a data collector plugin for netdata.\n"
"\n"
" Available command line options:\n"
"\n"
" SECONDS set the data collection frequency\n"
"\n"
" debug enable debugging (lot of output)\n"
"\n"
" with-function-cmdline enable reporting the complete command line for processes\n"
" it includes the command and passed arguments\n"
" it may include sensitive data such as passwords and tokens\n"
" enabling this could be a security risk\n"
"\n"
" with-childs\n"
" without-childs enable / disable aggregating exited\n"
" children resources into parents\n"
" (default is enabled)\n"
"\n"
" with-guest\n"
" without-guest enable / disable reporting guest charts\n"
" (default is disabled)\n"
"\n"
" with-files\n"
" without-files enable / disable reporting files, sockets, pipes\n"
" (default is enabled)\n"
"\n"
" without-users disable reporting per user charts\n"
"\n"
" without-groups disable reporting per user group charts\n"
"\n"
" with-detailed-uptime enable reporting min/avg/max uptime charts\n"
"\n"
#ifndef __FreeBSD__
" fds-cache-secs N cache the files of processed for N seconds\n"
" caching is adaptive per file (when a file\n"
" is found, it starts at 0 and while the file\n"
" remains open, it is incremented up to the\n"
" max given)\n"
" (default is %d seconds)\n"
"\n"
#endif
" version or -v or -V print program version and exit\n"
"\n"
, VERSION
#ifndef __FreeBSD__
, max_fds_cache_seconds
#endif
);
exit(1);
}
netdata_log_error("Cannot understand option %s", argv[i]);
exit(1);
}
if(freq > 0) update_every = freq;
if(read_apps_groups_conf(user_config_dir, "groups")) {
netdata_log_info("Cannot read process groups configuration file '%s/apps_groups.conf'. Will try '%s/apps_groups.conf'", user_config_dir, stock_config_dir);
if(read_apps_groups_conf(stock_config_dir, "groups")) {
netdata_log_error("Cannot read process groups '%s/apps_groups.conf'. There are no internal defaults. Failing.", stock_config_dir);
exit(1);
}
else
netdata_log_info("Loaded config file '%s/apps_groups.conf'", stock_config_dir);
}
else
netdata_log_info("Loaded config file '%s/apps_groups.conf'", user_config_dir);
}
static int am_i_running_as_root() {
uid_t uid = getuid(), euid = geteuid();
if(uid == 0 || euid == 0) {
if(debug_enabled) netdata_log_info("I am running with escalated privileges, uid = %u, euid = %u.", uid, euid);
return 1;
}
if(debug_enabled) netdata_log_info("I am not running with escalated privileges, uid = %u, euid = %u.", uid, euid);
return 0;
}
#ifdef HAVE_SYS_CAPABILITY_H
static int check_capabilities() {
cap_t caps = cap_get_proc();
if(!caps) {
netdata_log_error("Cannot get current capabilities.");
return 0;
}
else if(debug_enabled)
netdata_log_info("Received my capabilities from the system.");
int ret = 1;
cap_flag_value_t cfv = CAP_CLEAR;
if(cap_get_flag(caps, CAP_DAC_READ_SEARCH, CAP_EFFECTIVE, &cfv) == -1) {
netdata_log_error("Cannot find if CAP_DAC_READ_SEARCH is effective.");
ret = 0;
}
else {
if(cfv != CAP_SET) {
netdata_log_error("apps.plugin should run with CAP_DAC_READ_SEARCH.");
ret = 0;
}
else if(debug_enabled)
netdata_log_info("apps.plugin runs with CAP_DAC_READ_SEARCH.");
}
cfv = CAP_CLEAR;
if(cap_get_flag(caps, CAP_SYS_PTRACE, CAP_EFFECTIVE, &cfv) == -1) {
netdata_log_error("Cannot find if CAP_SYS_PTRACE is effective.");
ret = 0;
}
else {
if(cfv != CAP_SET) {
netdata_log_error("apps.plugin should run with CAP_SYS_PTRACE.");
ret = 0;
}
else if(debug_enabled)
netdata_log_info("apps.plugin runs with CAP_SYS_PTRACE.");
}
cap_free(caps);
return ret;
}
#else
static int check_capabilities() {
return 0;
}
#endif
static netdata_mutex_t apps_and_stdout_mutex = NETDATA_MUTEX_INITIALIZER;
#define PROCESS_FILTER_CATEGORY "category:"
#define PROCESS_FILTER_USER "user:"
#define PROCESS_FILTER_GROUP "group:"
#define PROCESS_FILTER_PROCESS "process:"
#define PROCESS_FILTER_PID "pid:"
#define PROCESS_FILTER_UID "uid:"
#define PROCESS_FILTER_GID "gid:"
static struct target *find_target_by_name(struct target *base, const char *name) {
struct target *t;
for(t = base; t ; t = t->next) {
if (strcmp(t->name, name) == 0)
return t;
}
return NULL;
}
static kernel_uint_t MemTotal = 0;
static void get_MemTotal(void) {
#ifdef __FreeBSD__
// TODO - fix this for FreeBSD
return;
#else
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s/proc/meminfo", netdata_configured_host_prefix);
procfile *ff = procfile_open(filename, ": \t", PROCFILE_FLAG_DEFAULT);
if(!ff)
return;
ff = procfile_readall(ff);
if(!ff)
return;
size_t line, lines = procfile_lines(ff);
for(line = 0; line < lines ;line++) {
size_t words = procfile_linewords(ff, line);
if(words == 3 && strcmp(procfile_lineword(ff, line, 0), "MemTotal") == 0 && strcmp(procfile_lineword(ff, line, 2), "kB") == 0) {
kernel_uint_t n = str2ull(procfile_lineword(ff, line, 1), NULL);
if(n) MemTotal = n;
break;
}
}
procfile_close(ff);
#endif
}
static void apps_plugin_function_processes_help(const char *transaction) {
BUFFER *wb = buffer_create(0, NULL);
buffer_sprintf(wb, "%s",
"apps.plugin / processes\n"
"\n"
"Function `processes` presents all the currently running processes of the system.\n"
"\n"
"The following filters are supported:\n"
"\n"
" category:NAME\n"
" Shows only processes that are assigned the category `NAME` in apps_groups.conf\n"
"\n"
" user:NAME\n"
" Shows only processes that are running as user name `NAME`.\n"
"\n"
" group:NAME\n"
" Shows only processes that are running as group name `NAME`.\n"
"\n"
" process:NAME\n"
" Shows only processes that their Command is `NAME` or their parent's Command is `NAME`.\n"
"\n"
" pid:NUMBER\n"
" Shows only processes that their PID is `NUMBER` or their parent's PID is `NUMBER`\n"
"\n"
" uid:NUMBER\n"
" Shows only processes that their UID is `NUMBER`\n"
"\n"
" gid:NUMBER\n"
" Shows only processes that their GID is `NUMBER`\n"
"\n"
"Filters can be combined. Each filter can be given only one time.\n"
);
pluginsd_function_result_to_stdout(transaction, HTTP_RESP_OK, "text/plain", now_realtime_sec() + 3600, wb);
buffer_free(wb);
}
#define add_value_field_llu_with_max(wb, key, value) do { \
unsigned long long _tmp = (value); \
key ## _max = (rows == 0) ? (_tmp) : MAX(key ## _max, _tmp); \
buffer_json_add_array_item_uint64(wb, _tmp); \
} while(0)
#define add_value_field_ndd_with_max(wb, key, value) do { \
NETDATA_DOUBLE _tmp = (value); \
key ## _max = (rows == 0) ? (_tmp) : MAX(key ## _max, _tmp); \
buffer_json_add_array_item_double(wb, _tmp); \
} while(0)
static void function_processes(const char *transaction, char *function __maybe_unused,
usec_t *stop_monotonic_ut __maybe_unused, bool *cancelled __maybe_unused,
BUFFER *payload __maybe_unused, const char *source __maybe_unused, void *data __maybe_unused) {
struct pid_stat *p;
char *words[PLUGINSD_MAX_WORDS] = { NULL };
size_t num_words = quoted_strings_splitter_pluginsd(function, words, PLUGINSD_MAX_WORDS);
struct target *category = NULL, *user = NULL, *group = NULL;
const char *process_name = NULL;
pid_t pid = 0;
uid_t uid = 0;
gid_t gid = 0;
bool filter_pid = false, filter_uid = false, filter_gid = false;
for(int i = 1; i < PLUGINSD_MAX_WORDS ;i++) {
const char *keyword = get_word(words, num_words, i);
if(!keyword) break;
if(!category && strncmp(keyword, PROCESS_FILTER_CATEGORY, strlen(PROCESS_FILTER_CATEGORY)) == 0) {
category = find_target_by_name(apps_groups_root_target, &keyword[strlen(PROCESS_FILTER_CATEGORY)]);
if(!category) {
pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST,
"No category with that name found.");
return;
}
}
else if(!user && strncmp(keyword, PROCESS_FILTER_USER, strlen(PROCESS_FILTER_USER)) == 0) {
user = find_target_by_name(users_root_target, &keyword[strlen(PROCESS_FILTER_USER)]);
if(!user) {
pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST,
"No user with that name found.");
return;
}
}
else if(strncmp(keyword, PROCESS_FILTER_GROUP, strlen(PROCESS_FILTER_GROUP)) == 0) {
group = find_target_by_name(groups_root_target, &keyword[strlen(PROCESS_FILTER_GROUP)]);
if(!group) {
pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST,
"No group with that name found.");
return;
}
}
else if(!process_name && strncmp(keyword, PROCESS_FILTER_PROCESS, strlen(PROCESS_FILTER_PROCESS)) == 0) {
process_name = &keyword[strlen(PROCESS_FILTER_PROCESS)];
}
else if(!pid && strncmp(keyword, PROCESS_FILTER_PID, strlen(PROCESS_FILTER_PID)) == 0) {
pid = str2i(&keyword[strlen(PROCESS_FILTER_PID)]);
filter_pid = true;
}
else if(!uid && strncmp(keyword, PROCESS_FILTER_UID, strlen(PROCESS_FILTER_UID)) == 0) {
uid = str2i(&keyword[strlen(PROCESS_FILTER_UID)]);
filter_uid = true;
}
else if(!gid && strncmp(keyword, PROCESS_FILTER_GID, strlen(PROCESS_FILTER_GID)) == 0) {
gid = str2i(&keyword[strlen(PROCESS_FILTER_GID)]);
filter_gid = true;
}
else if(strcmp(keyword, "help") == 0) {
apps_plugin_function_processes_help(transaction);
return;
}
else {
char msg[1024];
snprintfz(msg, sizeof(msg), "Invalid parameter '%s'", keyword);
pluginsd_function_json_error_to_stdout(transaction, HTTP_RESP_BAD_REQUEST, msg);
return;
}
}
time_t expires = now_realtime_sec() + update_every;
unsigned int cpu_divisor = time_factor * RATES_DETAIL / 100;
unsigned int memory_divisor = 1024;
unsigned int io_divisor = 1024 * RATES_DETAIL;
BUFFER *wb = buffer_create(4096, NULL);
buffer_json_initialize(wb, "\"", "\"", 0, true, BUFFER_JSON_OPTIONS_NEWLINE_ON_ARRAY_ITEMS);
buffer_json_member_add_uint64(wb, "status", HTTP_RESP_OK);
buffer_json_member_add_string(wb, "type", "table");
buffer_json_member_add_time_t(wb, "update_every", update_every);
buffer_json_member_add_string(wb, "help", APPS_PLUGIN_PROCESSES_FUNCTION_DESCRIPTION);
buffer_json_member_add_array(wb, "data");
NETDATA_DOUBLE
UserCPU_max = 0.0
, SysCPU_max = 0.0
, GuestCPU_max = 0.0
, CUserCPU_max = 0.0
, CSysCPU_max = 0.0
, CGuestCPU_max = 0.0
, CPU_max = 0.0
, VMSize_max = 0.0
, RSS_max = 0.0
, Shared_max = 0.0
, Swap_max = 0.0
, Memory_max = 0.0
, FDsLimitPercent_max = 0.0
;
unsigned long long
Processes_max = 0
, Threads_max = 0
, VoluntaryCtxtSwitches_max = 0
, NonVoluntaryCtxtSwitches_max = 0
, Uptime_max = 0
, MinFlt_max = 0
, CMinFlt_max = 0
, TMinFlt_max = 0
, MajFlt_max = 0
, CMajFlt_max = 0
, TMajFlt_max = 0
, PReads_max = 0
, PWrites_max = 0
, RCalls_max = 0
, WCalls_max = 0
, Files_max = 0
, Pipes_max = 0
, Sockets_max = 0
, iNotiFDs_max = 0
, EventFDs_max = 0
, TimerFDs_max = 0
, SigFDs_max = 0
, EvPollFDs_max = 0
, OtherFDs_max = 0
, FDs_max = 0
;
#ifndef __FreeBSD__
unsigned long long
LReads_max = 0
, LWrites_max = 0
;
#endif
int rows= 0;
for(p = root_of_pids; p ; p = p->next) {
if(!p->updated)
continue;
if(category && p->target != category)
continue;
if(user && p->user_target != user)
continue;
if(group && p->group_target != group)
continue;
if(process_name && ((strcmp(p->comm, process_name) != 0 && !p->parent) || (p->parent && strcmp(p->comm, process_name) != 0 && strcmp(p->parent->comm, process_name) != 0)))
continue;
if(filter_pid && p->pid != pid && p->ppid != pid)
continue;
if(filter_uid && p->uid != uid)
continue;
if(filter_gid && p->gid != gid)
continue;
rows++;
buffer_json_add_array_item_array(wb); // for each pid
// IMPORTANT!
// THE ORDER SHOULD BE THE SAME WITH THE FIELDS!
// pid
buffer_json_add_array_item_uint64(wb, p->pid);
// cmd
buffer_json_add_array_item_string(wb, p->comm);
// cmdline
if (enable_function_cmdline) {
buffer_json_add_array_item_string(wb, (p->cmdline && *p->cmdline) ? p->cmdline : p->comm);
}
// ppid
buffer_json_add_array_item_uint64(wb, p->ppid);
// category
buffer_json_add_array_item_string(wb, p->target ? p->target->name : "-");
// user
buffer_json_add_array_item_string(wb, p->user_target ? p->user_target->name : "-");
// uid
buffer_json_add_array_item_uint64(wb, p->uid);
// group
buffer_json_add_array_item_string(wb, p->group_target ? p->group_target->name : "-");
// gid
buffer_json_add_array_item_uint64(wb, p->gid);
// CPU utilization %
add_value_field_ndd_with_max(wb, CPU, (NETDATA_DOUBLE)(p->utime + p->stime + p->gtime + p->cutime + p->cstime + p->cgtime) / cpu_divisor);
add_value_field_ndd_with_max(wb, UserCPU, (NETDATA_DOUBLE)(p->utime) / cpu_divisor);
add_value_field_ndd_with_max(wb, SysCPU, (NETDATA_DOUBLE)(p->stime) / cpu_divisor);
add_value_field_ndd_with_max(wb, GuestCPU, (NETDATA_DOUBLE)(p->gtime) / cpu_divisor);
add_value_field_ndd_with_max(wb, CUserCPU, (NETDATA_DOUBLE)(p->cutime) / cpu_divisor);
add_value_field_ndd_with_max(wb, CSysCPU, (NETDATA_DOUBLE)(p->cstime) / cpu_divisor);
add_value_field_ndd_with_max(wb, CGuestCPU, (NETDATA_DOUBLE)(p->cgtime) / cpu_divisor);
add_value_field_llu_with_max(wb, VoluntaryCtxtSwitches, p->status_voluntary_ctxt_switches / RATES_DETAIL);
add_value_field_llu_with_max(wb, NonVoluntaryCtxtSwitches, p->status_nonvoluntary_ctxt_switches / RATES_DETAIL);
// memory MiB
if(MemTotal)
add_value_field_ndd_with_max(wb, Memory, (NETDATA_DOUBLE)p->status_vmrss * 100.0 / (NETDATA_DOUBLE)MemTotal);
add_value_field_ndd_with_max(wb, RSS, (NETDATA_DOUBLE)p->status_vmrss / memory_divisor);
add_value_field_ndd_with_max(wb, Shared, (NETDATA_DOUBLE)p->status_vmshared / memory_divisor);
add_value_field_ndd_with_max(wb, VMSize, (NETDATA_DOUBLE)p->status_vmsize / memory_divisor);
add_value_field_ndd_with_max(wb, Swap, (NETDATA_DOUBLE)p->status_vmswap / memory_divisor);
// Physical I/O
add_value_field_llu_with_max(wb, PReads, p->io_storage_bytes_read / io_divisor);
add_value_field_llu_with_max(wb, PWrites, p->io_storage_bytes_written / io_divisor);
// Logical I/O
#ifndef __FreeBSD__
add_value_field_llu_with_max(wb, LReads, p->io_logical_bytes_read / io_divisor);
add_value_field_llu_with_max(wb, LWrites, p->io_logical_bytes_written / io_divisor);
#endif
// I/O calls
add_value_field_llu_with_max(wb, RCalls, p->io_read_calls / RATES_DETAIL);
add_value_field_llu_with_max(wb, WCalls, p->io_write_calls / RATES_DETAIL);
// minor page faults
add_value_field_llu_with_max(wb, MinFlt, p->minflt / RATES_DETAIL);
add_value_field_llu_with_max(wb, CMinFlt, p->cminflt / RATES_DETAIL);
add_value_field_llu_with_max(wb, TMinFlt, (p->minflt + p->cminflt) / RATES_DETAIL);
// major page faults
add_value_field_llu_with_max(wb, MajFlt, p->majflt / RATES_DETAIL);
add_value_field_llu_with_max(wb, CMajFlt, p->cmajflt / RATES_DETAIL);
add_value_field_llu_with_max(wb, TMajFlt, (p->majflt + p->cmajflt) / RATES_DETAIL);
// open file descriptors
add_value_field_ndd_with_max(wb, FDsLimitPercent, p->openfds_limits_percent);
add_value_field_llu_with_max(wb, FDs, pid_openfds_sum(p));
add_value_field_llu_with_max(wb, Files, p->openfds.files);
add_value_field_llu_with_max(wb, Pipes, p->openfds.pipes);
add_value_field_llu_with_max(wb, Sockets, p->openfds.sockets);
add_value_field_llu_with_max(wb, iNotiFDs, p->openfds.inotifies);
add_value_field_llu_with_max(wb, EventFDs, p->openfds.eventfds);
add_value_field_llu_with_max(wb, TimerFDs, p->openfds.timerfds);
add_value_field_llu_with_max(wb, SigFDs, p->openfds.signalfds);
add_value_field_llu_with_max(wb, EvPollFDs, p->openfds.eventpolls);
add_value_field_llu_with_max(wb, OtherFDs, p->openfds.other);
// processes, threads, uptime
add_value_field_llu_with_max(wb, Processes, p->children_count);
add_value_field_llu_with_max(wb, Threads, p->num_threads);
add_value_field_llu_with_max(wb, Uptime, p->uptime);
buffer_json_array_close(wb); // for each pid
}
buffer_json_array_close(wb); // data
buffer_json_member_add_object(wb, "columns");
{
int field_id = 0;
// IMPORTANT!
// THE ORDER SHOULD BE THE SAME WITH THE VALUES!
// wb, key, name, visible, type, visualization, transform, decimal_points, units, max, sort, sortable, sticky, unique_key, pointer_to, summary, range
buffer_rrdf_table_add_field(wb, field_id++, "PID", "Process ID", RRDF_FIELD_TYPE_INTEGER,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY |
RRDF_FIELD_OPTS_UNIQUE_KEY, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Cmd", "Process Name", RRDF_FIELD_TYPE_STRING,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY, NULL);
if (enable_function_cmdline) {
buffer_rrdf_table_add_field(wb, field_id++, "CmdLine", "Command Line", RRDF_FIELD_TYPE_STRING,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0,
NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_NONE, NULL);
}
buffer_rrdf_table_add_field(wb, field_id++, "PPID", "Parent Process ID", RRDF_FIELD_TYPE_INTEGER,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL,
NAN, RRDF_FIELD_SORT_ASCENDING, "PID", RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Category", "Category (apps_groups.conf)", RRDF_FIELD_TYPE_STRING,
RRDF_FIELD_VISUAL_VALUE,
RRDF_FIELD_TRANSFORM_NONE,
0, NULL, NAN, RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_VISIBLE | RRDF_FIELD_OPTS_STICKY, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "User", "User Owner", RRDF_FIELD_TYPE_STRING,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Uid", "User ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE,
RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Group", "Group Owner", RRDF_FIELD_TYPE_STRING,
RRDF_FIELD_VISUAL_VALUE, RRDF_FIELD_TRANSFORM_NONE, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Gid", "Group ID", RRDF_FIELD_TYPE_INTEGER, RRDF_FIELD_VISUAL_VALUE,
RRDF_FIELD_TRANSFORM_NUMBER, 0, NULL, NAN,
RRDF_FIELD_SORT_ASCENDING, NULL, RRDF_FIELD_SUMMARY_COUNT,
RRDF_FIELD_FILTER_MULTISELECT,
RRDF_FIELD_OPTS_NONE, NULL);
// CPU utilization
buffer_rrdf_table_add_field(wb, field_id++, "CPU", "Total CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CPU_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "UserCPU", "User CPU time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", UserCPU_max,
RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "SysCPU", "System CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", SysCPU_max,
RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "GuestCPU", "Guest CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", GuestCPU_max,
RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "CUserCPU", "Children User CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CUserCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "CSysCPU", "Children System CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CSysCPU_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "CGuestCPU", "Children Guest CPU Time (100% = 1 core)",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", CGuestCPU_max, RRDF_FIELD_SORT_DESCENDING,
NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL);
// CPU context switches
buffer_rrdf_table_add_field(wb, field_id++, "vCtxSwitch", "Voluntary Context Switches",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "switches/s",
VoluntaryCtxtSwitches_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "iCtxSwitch", "Involuntary Context Switches",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2, "switches/s",
NonVoluntaryCtxtSwitches_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE, RRDF_FIELD_OPTS_NONE, NULL);
// memory
if (MemTotal)
buffer_rrdf_table_add_field(wb, field_id++, "Memory", "Memory Percentage", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", 100.0, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Resident", "Resident Set Size", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER,
2, "MiB", RSS_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Shared", "Shared Pages", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2,
"MiB", Shared_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Virtual", "Virtual Memory Size", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "MiB", VMSize_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Swap", "Swap Memory", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2,
"MiB",
Swap_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
// Physical I/O
buffer_rrdf_table_add_field(wb, field_id++, "PReads", "Physical I/O Reads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER,
2, "KiB/s", PReads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "PWrites", "Physical I/O Writes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "KiB/s", PWrites_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
// Logical I/O
#ifndef __FreeBSD__
buffer_rrdf_table_add_field(wb, field_id++, "LReads", "Logical I/O Reads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER,
2, "KiB/s", LReads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "LWrites", "Logical I/O Writes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER,
2, "KiB/s", LWrites_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
#endif
// I/O calls
buffer_rrdf_table_add_field(wb, field_id++, "RCalls", "I/O Read Calls", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2,
"calls/s", RCalls_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "WCalls", "I/O Write Calls", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 2,
"calls/s", WCalls_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
// minor page faults
buffer_rrdf_table_add_field(wb, field_id++, "MinFlt", "Minor Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER,
2, "pgflts/s", MinFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "CMinFlt", "Children Minor Page Faults/s",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", CMinFlt_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "TMinFlt", "Total Minor Page Faults/s",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", TMinFlt_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
// major page faults
buffer_rrdf_table_add_field(wb, field_id++, "MajFlt", "Major Page Faults/s", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER,
2, "pgflts/s", MajFlt_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "CMajFlt", "Children Major Page Faults/s",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", CMajFlt_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "TMajFlt", "Total Major Page Faults/s",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "pgflts/s", TMajFlt_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
// open file descriptors
buffer_rrdf_table_add_field(wb, field_id++, "FDsLimitPercent", "Percentage of Open Descriptors vs Limits",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 2, "%", FDsLimitPercent_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_MAX, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "FDs", "All Open File Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", FDs_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Files", "Open Files", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0,
"fds",
Files_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Pipes", "Open Pipes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0,
"fds",
Pipes_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Sockets", "Open Sockets", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0,
"fds", Sockets_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "iNotiFDs", "Open iNotify Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", iNotiFDs_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "EventFDs", "Open Event Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", EventFDs_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "TimerFDs", "Open Timer Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", TimerFDs_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "SigFDs", "Open Signal Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", SigFDs_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "EvPollFDs", "Open Event Poll Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", EvPollFDs_max,
RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "OtherFDs", "Other Open Descriptors",
RRDF_FIELD_TYPE_BAR_WITH_INTEGER, RRDF_FIELD_VISUAL_BAR,
RRDF_FIELD_TRANSFORM_NUMBER, 0, "fds", OtherFDs_max, RRDF_FIELD_SORT_DESCENDING,
NULL, RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
// processes, threads, uptime
buffer_rrdf_table_add_field(wb, field_id++, "Processes", "Processes", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0,
"processes", Processes_max, RRDF_FIELD_SORT_DESCENDING, NULL,
RRDF_FIELD_SUMMARY_SUM, RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Threads", "Threads", RRDF_FIELD_TYPE_BAR_WITH_INTEGER,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_NUMBER, 0,
"threads", Threads_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_SUM,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_NONE, NULL);
buffer_rrdf_table_add_field(wb, field_id++, "Uptime", "Uptime in seconds", RRDF_FIELD_TYPE_DURATION,
RRDF_FIELD_VISUAL_BAR, RRDF_FIELD_TRANSFORM_DURATION_S, 2,
"seconds", Uptime_max, RRDF_FIELD_SORT_DESCENDING, NULL, RRDF_FIELD_SUMMARY_MAX,
RRDF_FIELD_FILTER_RANGE,
RRDF_FIELD_OPTS_VISIBLE, NULL);
}
buffer_json_object_close(wb); // columns
buffer_json_member_add_string(wb, "default_sort_column", "CPU");
buffer_json_member_add_object(wb, "charts");
{
// CPU chart
buffer_json_member_add_object(wb, "CPU");
{
buffer_json_member_add_string(wb, "name", "CPU Utilization");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "UserCPU");
buffer_json_add_array_item_string(wb, "SysCPU");
buffer_json_add_array_item_string(wb, "GuestCPU");
buffer_json_add_array_item_string(wb, "CUserCPU");
buffer_json_add_array_item_string(wb, "CSysCPU");
buffer_json_add_array_item_string(wb, "CGuestCPU");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
buffer_json_member_add_object(wb, "CPUCtxSwitches");
{
buffer_json_member_add_string(wb, "name", "CPU Context Switches");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "vCtxSwitch");
buffer_json_add_array_item_string(wb, "iCtxSwitch");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Memory chart
buffer_json_member_add_object(wb, "Memory");
{
buffer_json_member_add_string(wb, "name", "Memory");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Virtual");
buffer_json_add_array_item_string(wb, "Resident");
buffer_json_add_array_item_string(wb, "Shared");
buffer_json_add_array_item_string(wb, "Swap");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
if(MemTotal) {
// Memory chart
buffer_json_member_add_object(wb, "MemoryPercent");
{
buffer_json_member_add_string(wb, "name", "Memory Percentage");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Memory");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
}
#ifndef __FreeBSD__
// I/O Reads chart
buffer_json_member_add_object(wb, "Reads");
{
buffer_json_member_add_string(wb, "name", "I/O Reads");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "LReads");
buffer_json_add_array_item_string(wb, "PReads");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// I/O Writes chart
buffer_json_member_add_object(wb, "Writes");
{
buffer_json_member_add_string(wb, "name", "I/O Writes");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "LWrites");
buffer_json_add_array_item_string(wb, "PWrites");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Logical I/O chart
buffer_json_member_add_object(wb, "LogicalIO");
{
buffer_json_member_add_string(wb, "name", "Logical I/O");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "LReads");
buffer_json_add_array_item_string(wb, "LWrites");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
#endif
// Physical I/O chart
buffer_json_member_add_object(wb, "PhysicalIO");
{
buffer_json_member_add_string(wb, "name", "Physical I/O");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "PReads");
buffer_json_add_array_item_string(wb, "PWrites");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// I/O Calls chart
buffer_json_member_add_object(wb, "IOCalls");
{
buffer_json_member_add_string(wb, "name", "I/O Calls");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "RCalls");
buffer_json_add_array_item_string(wb, "WCalls");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Minor Page Faults chart
buffer_json_member_add_object(wb, "MinFlt");
{
buffer_json_member_add_string(wb, "name", "Minor Page Faults");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "MinFlt");
buffer_json_add_array_item_string(wb, "CMinFlt");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Major Page Faults chart
buffer_json_member_add_object(wb, "MajFlt");
{
buffer_json_member_add_string(wb, "name", "Major Page Faults");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "MajFlt");
buffer_json_add_array_item_string(wb, "CMajFlt");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Threads chart
buffer_json_member_add_object(wb, "Threads");
{
buffer_json_member_add_string(wb, "name", "Threads");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Threads");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// Processes chart
buffer_json_member_add_object(wb, "Processes");
{
buffer_json_member_add_string(wb, "name", "Processes");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Processes");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// FDs chart
buffer_json_member_add_object(wb, "FDs");
{
buffer_json_member_add_string(wb, "name", "File Descriptors");
buffer_json_member_add_string(wb, "type", "stacked-bar");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Files");
buffer_json_add_array_item_string(wb, "Pipes");
buffer_json_add_array_item_string(wb, "Sockets");
buffer_json_add_array_item_string(wb, "iNotiFDs");
buffer_json_add_array_item_string(wb, "EventFDs");
buffer_json_add_array_item_string(wb, "TimerFDs");
buffer_json_add_array_item_string(wb, "SigFDs");
buffer_json_add_array_item_string(wb, "EvPollFDs");
buffer_json_add_array_item_string(wb, "OtherFDs");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
}
buffer_json_object_close(wb); // charts
buffer_json_member_add_array(wb, "default_charts");
{
buffer_json_add_array_item_array(wb);
buffer_json_add_array_item_string(wb, "CPU");
buffer_json_add_array_item_string(wb, "Category");
buffer_json_array_close(wb);
buffer_json_add_array_item_array(wb);
buffer_json_add_array_item_string(wb, "Memory");
buffer_json_add_array_item_string(wb, "Category");
buffer_json_array_close(wb);
}
buffer_json_array_close(wb);
buffer_json_member_add_object(wb, "group_by");
{
// group by PID
buffer_json_member_add_object(wb, "PID");
{
buffer_json_member_add_string(wb, "name", "Process Tree by PID");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "PPID");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// group by Category
buffer_json_member_add_object(wb, "Category");
{
buffer_json_member_add_string(wb, "name", "Process Tree by Category");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Category");
buffer_json_add_array_item_string(wb, "PPID");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// group by User
buffer_json_member_add_object(wb, "User");
{
buffer_json_member_add_string(wb, "name", "Process Tree by User");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "User");
buffer_json_add_array_item_string(wb, "PPID");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
// group by Group
buffer_json_member_add_object(wb, "Group");
{
buffer_json_member_add_string(wb, "name", "Process Tree by Group");
buffer_json_member_add_array(wb, "columns");
{
buffer_json_add_array_item_string(wb, "Group");
buffer_json_add_array_item_string(wb, "PPID");
}
buffer_json_array_close(wb);
}
buffer_json_object_close(wb);
}
buffer_json_object_close(wb); // group_by
buffer_json_member_add_time_t(wb, "expires", expires);
buffer_json_finalize(wb);
pluginsd_function_result_to_stdout(transaction, HTTP_RESP_OK, "application/json", expires, wb);
buffer_free(wb);
}
static bool apps_plugin_exit = false;
int main(int argc, char **argv) {
clocks_init();
nd_log_initialize_for_external_plugins("apps.plugin");
pagesize = (size_t)sysconf(_SC_PAGESIZE);
bool send_resource_usage = true;
{
const char *s = getenv("NETDATA_INTERNALS_MONITORING");
if(s && *s && strcmp(s, "NO") == 0)
send_resource_usage = false;
}
// since apps.plugin runs as root, prevent it from opening symbolic links
procfile_open_flags = O_RDONLY|O_NOFOLLOW;
netdata_configured_host_prefix = getenv("NETDATA_HOST_PREFIX");
if(verify_netdata_host_prefix(true) == -1) exit(1);
user_config_dir = getenv("NETDATA_USER_CONFIG_DIR");
if(user_config_dir == NULL) {
// netdata_log_info("NETDATA_CONFIG_DIR is not passed from netdata");
user_config_dir = CONFIG_DIR;
}
// else netdata_log_info("Found NETDATA_USER_CONFIG_DIR='%s'", user_config_dir);
stock_config_dir = getenv("NETDATA_STOCK_CONFIG_DIR");
if(stock_config_dir == NULL) {
// netdata_log_info("NETDATA_CONFIG_DIR is not passed from netdata");
stock_config_dir = LIBCONFIG_DIR;
}
// else netdata_log_info("Found NETDATA_USER_CONFIG_DIR='%s'", user_config_dir);
#ifdef NETDATA_INTERNAL_CHECKS
if(debug_flags != 0) {
struct rlimit rl = { RLIM_INFINITY, RLIM_INFINITY };
if(setrlimit(RLIMIT_CORE, &rl) != 0)
netdata_log_info("Cannot request unlimited core dumps for debugging... Proceeding anyway...");
#ifdef HAVE_SYS_PRCTL_H
prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
#endif
}
#endif /* NETDATA_INTERNAL_CHECKS */
procfile_adaptive_initial_allocation = 1;
get_system_HZ();
#ifdef __FreeBSD__
time_factor = 1000000ULL / RATES_DETAIL; // FreeBSD uses usecs
#else
time_factor = system_hz; // Linux uses clock ticks
#endif
get_system_pid_max();
get_system_cpus_uncached();
parse_args(argc, argv);
if(!check_capabilities() && !am_i_running_as_root() && !check_proc_1_io()) {
uid_t uid = getuid(), euid = geteuid();
#ifdef HAVE_SYS_CAPABILITY_H
netdata_log_error("apps.plugin should either run as root (now running with uid %u, euid %u) or have special capabilities. "
"Without these, apps.plugin cannot report disk I/O utilization of other processes. "
"To enable capabilities run: sudo setcap cap_dac_read_search,cap_sys_ptrace+ep %s; "
"To enable setuid to root run: sudo chown root:netdata %s; sudo chmod 4750 %s; "
, uid, euid, argv[0], argv[0], argv[0]
);
#else
netdata_log_error("apps.plugin should either run as root (now running with uid %u, euid %u) or have special capabilities. "
"Without these, apps.plugin cannot report disk I/O utilization of other processes. "
"Your system does not support capabilities. "
"To enable setuid to root run: sudo chown root:netdata %s; sudo chmod 4750 %s; "
, uid, euid, argv[0], argv[0]
);
#endif
}
netdata_log_info("started on pid %d", getpid());
snprintfz(all_user_ids.filename, FILENAME_MAX, "%s/etc/passwd", netdata_configured_host_prefix);
debug_log("passwd file: '%s'", all_user_ids.filename);
snprintfz(all_group_ids.filename, FILENAME_MAX, "%s/etc/group", netdata_configured_host_prefix);
debug_log("group file: '%s'", all_group_ids.filename);
#if (ALL_PIDS_ARE_READ_INSTANTLY == 0)
all_pids_sortlist = callocz(sizeof(pid_t), (size_t)pid_max + 1);
#endif
all_pids = callocz(sizeof(struct pid_stat *), (size_t) pid_max + 1);
// ------------------------------------------------------------------------
// the event loop for functions
struct functions_evloop_globals *wg =
functions_evloop_init(1, "APPS", &apps_and_stdout_mutex, &apps_plugin_exit);
functions_evloop_add_function(wg, "processes", function_processes, PLUGINS_FUNCTIONS_TIMEOUT_DEFAULT, NULL);
// ------------------------------------------------------------------------
netdata_mutex_lock(&apps_and_stdout_mutex);
APPS_PLUGIN_GLOBAL_FUNCTIONS();
usec_t step = update_every * USEC_PER_SEC;
global_iterations_counter = 1;
heartbeat_t hb;
heartbeat_init(&hb);
for(; !apps_plugin_exit ; global_iterations_counter++) {
netdata_mutex_unlock(&apps_and_stdout_mutex);
#ifdef NETDATA_PROFILING
#warning "compiling for profiling"
static int profiling_count=0;
profiling_count++;
if(unlikely(profiling_count > 2000)) exit(0);
usec_t dt = update_every * USEC_PER_SEC;
#else
usec_t dt = heartbeat_next(&hb, step);
#endif
netdata_mutex_lock(&apps_and_stdout_mutex);
struct pollfd pollfd = { .fd = fileno(stdout), .events = POLLERR };
if (unlikely(poll(&pollfd, 1, 0) < 0)) {
netdata_mutex_unlock(&apps_and_stdout_mutex);
fatal("Cannot check if a pipe is available");
}
if (unlikely(pollfd.revents & POLLERR)) {
netdata_mutex_unlock(&apps_and_stdout_mutex);
fatal("Received error on read pipe.");
}
if(global_iterations_counter % 10 == 0)
get_MemTotal();
if(!collect_data_for_all_processes()) {
netdata_log_error("Cannot collect /proc data for running processes. Disabling apps.plugin...");
printf("DISABLE\n");
netdata_mutex_unlock(&apps_and_stdout_mutex);
exit(1);
}
calculate_netdata_statistics();
normalize_utilization(apps_groups_root_target);
if(send_resource_usage)
send_resource_usage_to_netdata(dt);
#ifndef __FreeBSD__
send_proc_states_count(dt);
#endif
send_charts_updates_to_netdata(apps_groups_root_target, "app", "app_group", "Apps");
send_collected_data_to_netdata(apps_groups_root_target, "app", dt);
if (enable_users_charts) {
send_charts_updates_to_netdata(users_root_target, "user", "user", "Users");
send_collected_data_to_netdata(users_root_target, "user", dt);
}
if (enable_groups_charts) {
send_charts_updates_to_netdata(groups_root_target, "usergroup", "user_group", "User Groups");
send_collected_data_to_netdata(groups_root_target, "usergroup", dt);
}
fflush(stdout);
show_guest_time_old = show_guest_time;
debug_log("done Loop No %zu", global_iterations_counter);
}
netdata_mutex_unlock(&apps_and_stdout_mutex);
}