mirror of
https://github.com/netdata/netdata.git
synced 2025-04-14 01:29:11 +00:00

* cleanup alerts * fix references * fix references * fix references * load alerts once and apply them to each node * simplify health_create_alarm_entry() * Compile without warnings with compiler flags: -Wall -Wextra -Wformat=2 -Wshadow -Wno-format-nonliteral -Winit-self * code re-organization and cleanup * generate patterns when applying prototypes; give unique dyncfg names to all alerts * eval expressions keep the source and the parsed_as as STRING pointers * renamed host to node in dyncfg ids * renamed host to node in dyncfg ids * add all cloud roles to the list of parsed X-Netdata-Role header and also default to member access level * working functionality * code re-organization: moved health event-loop to a new file, moved health globals to health.c * rrdcalctemplate is removed; alert_cfg is removed; foreach dimension is removed; RRDCALCs are now instanciated only when they are linked to RRDSETs * dyncfg alert prototypes initialization for alerts * health dyncfg split to separate file * cleanup not-needed code * normalize matches between parsing and json * also detect !* for disabled alerts * dyncfg capability disabled * Store alert config part1 * Add rrdlabels_common_count * wip health variables lookup without indexes * Improve rrdlabels_common_count by reusing rrdlabels_find_label_with_key_unsafe with an additional parameter * working variables with runtime lookup * working variables with runtime lookup * delete rrddimvar and rrdfamily index * remove rrdsetvar; now all variables are in RRDVARs inside hosts and charts * added /api/v1/variable that resolves a variable the same way alerts do * remove rrdcalc from eval * remove debug code * remove duplicate assignment * Fix memory leak * all alert variables are now handled by alert_variable_lookup() and EVAL is now independent of alerts * hide all internal structures of EVAL * Enable -Wformat flag Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud> * Adjust binding for calculation, warning, critical * Remove unused macro * Update config hash id * use the right info and summary in alerts log * use synchronous queries for alerts * Handle cases when config_hash_id is missing from health_log * remove deadlock from health worker * parsing to json payload for health alert prototypes * cleaner parsing and avoiding memory leaks in case of duplicate members in json * fix left-over rename of function * Keep original lookup field to send to the cloud Cleanup / rename function to store config Remove unused DEFINEs, functions * Use ac->lookup * link jobs to the host when the template is registered; do not accept running a function without a host * full dyncfg support for health alerts, except action TEST * working dyncfg additions, updates, removals * fixed missing source, wrong status updates * add alerts by type, component, classification, recipient and module at the /api/v2/alerts endpoint * fix dyncfg unittest * rename functions * generalize the json-c parser macros and move them to libnetdata * report progress when enabling and disabling dyncfg templates * moved rrdcalc and rrdvar to health * update alarms * added schema for alerts; separated alert_action_options from rrdr_options; restructured the json payload for alerts * enable parsed json alerts; allow sending back accepted but disabled * added format_version for alerts payload; enables/disables status now is also inheritted by the status of the rules; fixed variable names in json output * remove the RRDHOST pointer from DYNCFG * Fix command field submitted to the cloud * do not send updates to creation requests, for DYNCFG jobs --------- Signed-off-by: Tasos Katsoulas <tasos@netdata.cloud> Co-authored-by: Stelios Fragkakis <52996999+stelfrag@users.noreply.github.com> Co-authored-by: Tasos Katsoulas <tasos@netdata.cloud> Co-authored-by: ilyam8 <ilya@netdata.cloud>
478 lines
16 KiB
C
478 lines
16 KiB
C
// SPDX-License-Identifier: GPL-3.0-or-later
|
|
|
|
#include "../libnetdata.h"
|
|
|
|
// defaults are for compatibility
|
|
// call clocks_init() once, to optimize these default settings
|
|
static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC;
|
|
static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC;
|
|
|
|
// the default clock resolution is 1ms
|
|
#define DEFAULT_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)1 * USEC_PER_MS)
|
|
|
|
// the max clock resolution is 10ms
|
|
#define MAX_CLOCK_RESOLUTION_UT ((usec_t)0 * USEC_PER_SEC + (usec_t)10 * USEC_PER_MS)
|
|
|
|
usec_t clock_monotonic_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
|
|
usec_t clock_realtime_resolution = DEFAULT_CLOCK_RESOLUTION_UT;
|
|
|
|
#ifndef HAVE_CLOCK_GETTIME
|
|
inline int clock_gettime(clockid_t clk_id __maybe_unused, struct timespec *ts) {
|
|
struct timeval tv;
|
|
if(unlikely(gettimeofday(&tv, NULL) == -1)) {
|
|
netdata_log_error("gettimeofday() failed.");
|
|
return -1;
|
|
}
|
|
ts->tv_sec = tv.tv_sec;
|
|
ts->tv_nsec = (long)((tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments
|
|
// or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended
|
|
|
|
static void test_clock_monotonic_raw(void) {
|
|
#ifdef CLOCK_MONOTONIC_RAW
|
|
struct timespec ts;
|
|
if(clock_gettime(CLOCK_MONOTONIC_RAW, &ts) == -1 && errno == EINVAL)
|
|
clock_monotonic_to_use = CLOCK_MONOTONIC;
|
|
else
|
|
clock_monotonic_to_use = CLOCK_MONOTONIC_RAW;
|
|
#else
|
|
clock_monotonic_to_use = CLOCK_MONOTONIC;
|
|
#endif
|
|
}
|
|
|
|
// When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the
|
|
// clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
|
|
|
|
static void test_clock_boottime(void) {
|
|
struct timespec ts;
|
|
if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
|
|
clock_boottime_to_use = clock_monotonic_to_use;
|
|
else
|
|
clock_boottime_to_use = CLOCK_BOOTTIME;
|
|
}
|
|
|
|
static usec_t get_clock_resolution(clockid_t clock) {
|
|
struct timespec ts = { 0 };
|
|
|
|
if(clock_getres(clock, &ts) == 0) {
|
|
usec_t ret = (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)ts.tv_nsec / NSEC_PER_USEC;
|
|
if(!ret && ts.tv_nsec > 0 && ts.tv_nsec < (long int)NSEC_PER_USEC)
|
|
return (usec_t)1;
|
|
|
|
else if(ret > MAX_CLOCK_RESOLUTION_UT) {
|
|
nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) returned %"PRIu64" usec is out of range, using defaults for clock resolution.", (int)clock, ret);
|
|
return DEFAULT_CLOCK_RESOLUTION_UT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
else {
|
|
nd_log(NDLS_DAEMON, NDLP_ERR, "clock_getres(%d) failed, using defaults for clock resolution.", (int)clock);
|
|
return DEFAULT_CLOCK_RESOLUTION_UT;
|
|
}
|
|
}
|
|
|
|
// perform any initializations required for clocks
|
|
|
|
void clocks_init(void) {
|
|
// monotonic raw has to be tested before boottime
|
|
test_clock_monotonic_raw();
|
|
|
|
// boottime has to be tested after monotonic coarse
|
|
test_clock_boottime();
|
|
|
|
clock_monotonic_resolution = get_clock_resolution(clock_monotonic_to_use);
|
|
clock_realtime_resolution = get_clock_resolution(CLOCK_REALTIME);
|
|
}
|
|
|
|
inline time_t now_sec(clockid_t clk_id) {
|
|
struct timespec ts;
|
|
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
|
|
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
|
|
return 0;
|
|
}
|
|
return ts.tv_sec;
|
|
}
|
|
|
|
inline usec_t now_usec(clockid_t clk_id) {
|
|
struct timespec ts;
|
|
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
|
|
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
|
|
return 0;
|
|
}
|
|
return (usec_t)ts.tv_sec * USEC_PER_SEC + (usec_t)(ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
|
|
}
|
|
|
|
inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
|
|
struct timespec ts;
|
|
|
|
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
|
|
netdata_log_error("clock_gettime(%d, ×pec) failed.", clk_id);
|
|
tv->tv_sec = 0;
|
|
tv->tv_usec = 0;
|
|
return -1;
|
|
}
|
|
|
|
tv->tv_sec = ts.tv_sec;
|
|
tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
|
|
return 0;
|
|
}
|
|
|
|
inline time_t now_realtime_sec(void) {
|
|
return now_sec(CLOCK_REALTIME);
|
|
}
|
|
|
|
inline msec_t now_realtime_msec(void) {
|
|
return now_usec(CLOCK_REALTIME) / USEC_PER_MS;
|
|
}
|
|
|
|
inline usec_t now_realtime_usec(void) {
|
|
return now_usec(CLOCK_REALTIME);
|
|
}
|
|
|
|
inline int now_realtime_timeval(struct timeval *tv) {
|
|
return now_timeval(CLOCK_REALTIME, tv);
|
|
}
|
|
|
|
inline time_t now_monotonic_sec(void) {
|
|
return now_sec(clock_monotonic_to_use);
|
|
}
|
|
|
|
inline usec_t now_monotonic_usec(void) {
|
|
return now_usec(clock_monotonic_to_use);
|
|
}
|
|
|
|
inline int now_monotonic_timeval(struct timeval *tv) {
|
|
return now_timeval(clock_monotonic_to_use, tv);
|
|
}
|
|
|
|
inline time_t now_monotonic_high_precision_sec(void) {
|
|
return now_sec(CLOCK_MONOTONIC);
|
|
}
|
|
|
|
inline usec_t now_monotonic_high_precision_usec(void) {
|
|
return now_usec(CLOCK_MONOTONIC);
|
|
}
|
|
|
|
inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
|
|
return now_timeval(CLOCK_MONOTONIC, tv);
|
|
}
|
|
|
|
inline time_t now_boottime_sec(void) {
|
|
return now_sec(clock_boottime_to_use);
|
|
}
|
|
|
|
inline usec_t now_boottime_usec(void) {
|
|
return now_usec(clock_boottime_to_use);
|
|
}
|
|
|
|
inline int now_boottime_timeval(struct timeval *tv) {
|
|
return now_timeval(clock_boottime_to_use, tv);
|
|
}
|
|
|
|
inline usec_t timeval_usec(struct timeval *tv) {
|
|
return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
|
|
}
|
|
|
|
inline msec_t timeval_msec(struct timeval *tv) {
|
|
return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
|
|
}
|
|
|
|
inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
|
|
usec_t ts1 = timeval_usec(now);
|
|
usec_t ts2 = timeval_usec(old);
|
|
|
|
if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
|
|
return -((susec_t)(ts2 - ts1));
|
|
}
|
|
|
|
inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
|
|
usec_t ts1 = timeval_usec(now);
|
|
usec_t ts2 = timeval_usec(old);
|
|
return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
|
|
}
|
|
|
|
#ifdef __linux__
|
|
void sleep_to_absolute_time(usec_t usec) {
|
|
static int einval_printed = 0, enotsup_printed = 0, eunknown_printed = 0;
|
|
clockid_t clock = CLOCK_REALTIME;
|
|
|
|
struct timespec req = {
|
|
.tv_sec = (time_t)(usec / USEC_PER_SEC),
|
|
.tv_nsec = (suseconds_t)((usec % USEC_PER_SEC) * NSEC_PER_USEC)
|
|
};
|
|
|
|
errno = 0;
|
|
int ret = 0;
|
|
while( (ret = clock_nanosleep(clock, TIMER_ABSTIME, &req, NULL)) != 0 ) {
|
|
if(ret == EINTR) {
|
|
errno = 0;
|
|
continue;
|
|
}
|
|
else {
|
|
if (ret == EINVAL) {
|
|
if (!einval_printed) {
|
|
einval_printed++;
|
|
netdata_log_error("Invalid time given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
|
|
clock,
|
|
(long long)req.tv_sec,
|
|
req.tv_nsec);
|
|
}
|
|
} else if (ret == ENOTSUP) {
|
|
if (!enotsup_printed) {
|
|
enotsup_printed++;
|
|
netdata_log_error("Invalid clock id given to clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
|
|
clock,
|
|
(long long)req.tv_sec,
|
|
req.tv_nsec);
|
|
}
|
|
} else {
|
|
if (!eunknown_printed) {
|
|
eunknown_printed++;
|
|
netdata_log_error("Unknown return value %d from clock_nanosleep(): clockid = %d, tv_sec = %lld, tv_nsec = %ld",
|
|
ret,
|
|
clock,
|
|
(long long)req.tv_sec,
|
|
req.tv_nsec);
|
|
}
|
|
}
|
|
sleep_usec(usec);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#define HEARTBEAT_ALIGNMENT_STATISTICS_SIZE 10
|
|
netdata_mutex_t heartbeat_alignment_mutex = NETDATA_MUTEX_INITIALIZER;
|
|
static size_t heartbeat_alignment_id = 0;
|
|
|
|
struct heartbeat_thread_statistics {
|
|
size_t sequence;
|
|
usec_t dt;
|
|
};
|
|
static struct heartbeat_thread_statistics heartbeat_alignment_values[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
|
|
|
|
void heartbeat_statistics(usec_t *min_ptr, usec_t *max_ptr, usec_t *average_ptr, size_t *count_ptr) {
|
|
struct heartbeat_thread_statistics current[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE];
|
|
static struct heartbeat_thread_statistics old[HEARTBEAT_ALIGNMENT_STATISTICS_SIZE] = { 0 };
|
|
|
|
memcpy(current, heartbeat_alignment_values, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
|
|
|
|
usec_t min = 0, max = 0, total = 0, average = 0;
|
|
size_t i, count = 0;
|
|
for(i = 0; i < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE ;i++) {
|
|
if(current[i].sequence == old[i].sequence) continue;
|
|
usec_t value = current[i].dt - old[i].dt;
|
|
|
|
if(!count) {
|
|
min = max = total = value;
|
|
count = 1;
|
|
}
|
|
else {
|
|
total += value;
|
|
if(value < min) min = value;
|
|
if(value > max) max = value;
|
|
count++;
|
|
}
|
|
}
|
|
if(count)
|
|
average = total / count;
|
|
|
|
if(min_ptr) *min_ptr = min;
|
|
if(max_ptr) *max_ptr = max;
|
|
if(average_ptr) *average_ptr = average;
|
|
if(count_ptr) *count_ptr = count;
|
|
|
|
memcpy(old, current, sizeof(struct heartbeat_thread_statistics) * HEARTBEAT_ALIGNMENT_STATISTICS_SIZE);
|
|
}
|
|
|
|
inline void heartbeat_init(heartbeat_t *hb) {
|
|
hb->realtime = 0ULL;
|
|
hb->randomness = (usec_t)250 * USEC_PER_MS + ((usec_t)(now_realtime_usec() * clock_realtime_resolution) % (250 * USEC_PER_MS));
|
|
hb->randomness -= (hb->randomness % clock_realtime_resolution);
|
|
|
|
netdata_mutex_lock(&heartbeat_alignment_mutex);
|
|
hb->statistics_id = heartbeat_alignment_id;
|
|
heartbeat_alignment_id++;
|
|
netdata_mutex_unlock(&heartbeat_alignment_mutex);
|
|
|
|
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
|
|
heartbeat_alignment_values[hb->statistics_id].dt = 0;
|
|
heartbeat_alignment_values[hb->statistics_id].sequence = 0;
|
|
}
|
|
}
|
|
|
|
// waits for the next heartbeat
|
|
// it waits using the monotonic clock
|
|
// it returns the dt using the realtime clock
|
|
|
|
usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
|
|
if(unlikely(hb->randomness > tick / 2)) {
|
|
// TODO: The heartbeat tick should be specified at the heartbeat_init() function
|
|
usec_t tmp = (now_realtime_usec() * clock_realtime_resolution) % (tick / 2);
|
|
|
|
nd_log_limit_static_global_var(erl, 10, 0);
|
|
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
|
|
"heartbeat randomness of %"PRIu64" is too big for a tick of %"PRIu64" - setting it to %"PRIu64"",
|
|
hb->randomness, tick, tmp);
|
|
hb->randomness = tmp;
|
|
}
|
|
|
|
usec_t dt;
|
|
usec_t now = now_realtime_usec();
|
|
usec_t next = now - (now % tick) + tick + hb->randomness;
|
|
|
|
// align the next time we want to the clock resolution
|
|
if(next % clock_realtime_resolution)
|
|
next = next - (next % clock_realtime_resolution) + clock_realtime_resolution;
|
|
|
|
// sleep_usec() has a loop to guarantee we will sleep for at least the requested time.
|
|
// According the specs, when we sleep for a relative time, clock adjustments should not affect the duration
|
|
// we sleep.
|
|
sleep_usec_with_now(next - now, now);
|
|
now = now_realtime_usec();
|
|
dt = now - hb->realtime;
|
|
|
|
if(hb->statistics_id < HEARTBEAT_ALIGNMENT_STATISTICS_SIZE) {
|
|
heartbeat_alignment_values[hb->statistics_id].dt += now - next;
|
|
heartbeat_alignment_values[hb->statistics_id].sequence++;
|
|
}
|
|
|
|
if(unlikely(now < next)) {
|
|
errno = 0;
|
|
nd_log_limit_static_global_var(erl, 10, 0);
|
|
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
|
|
"heartbeat clock: woke up %"PRIu64" microseconds earlier than expected "
|
|
"(can be due to the CLOCK_REALTIME set to the past).",
|
|
next - now);
|
|
}
|
|
else if(unlikely(now - next > tick / 2)) {
|
|
errno = 0;
|
|
nd_log_limit_static_global_var(erl, 10, 0);
|
|
nd_log_limit(&erl, NDLS_DAEMON, NDLP_NOTICE,
|
|
"heartbeat clock: woke up %"PRIu64" microseconds later than expected "
|
|
"(can be due to system load or the CLOCK_REALTIME set to the future).",
|
|
now - next);
|
|
}
|
|
|
|
if(unlikely(!hb->realtime)) {
|
|
// the first time return zero
|
|
dt = 0;
|
|
}
|
|
|
|
hb->realtime = now;
|
|
return dt;
|
|
}
|
|
|
|
void sleep_usec_with_now(usec_t usec, usec_t started_ut) {
|
|
// we expect microseconds (1.000.000 per second)
|
|
// but timespec is nanoseconds (1.000.000.000 per second)
|
|
struct timespec rem = { 0, 0 }, req = {
|
|
.tv_sec = (time_t) (usec / USEC_PER_SEC),
|
|
.tv_nsec = (suseconds_t) ((usec % USEC_PER_SEC) * NSEC_PER_USEC)
|
|
};
|
|
|
|
// make sure errno is not EINTR
|
|
errno = 0;
|
|
|
|
if(!started_ut)
|
|
started_ut = now_realtime_usec();
|
|
|
|
usec_t end_ut = started_ut + usec;
|
|
|
|
while (nanosleep(&req, &rem) != 0) {
|
|
if (likely(errno == EINTR && (rem.tv_sec || rem.tv_nsec))) {
|
|
req = rem;
|
|
rem = (struct timespec){ 0, 0 };
|
|
|
|
// break an infinite loop
|
|
errno = 0;
|
|
|
|
usec_t now_ut = now_realtime_usec();
|
|
if(now_ut >= end_ut)
|
|
break;
|
|
|
|
usec_t remaining_ut = (usec_t)req.tv_sec * USEC_PER_SEC + (usec_t)req.tv_nsec * NSEC_PER_USEC > usec;
|
|
usec_t check_ut = now_ut - started_ut;
|
|
if(remaining_ut > check_ut) {
|
|
req = (struct timespec){
|
|
.tv_sec = (time_t) ( check_ut / USEC_PER_SEC),
|
|
.tv_nsec = (suseconds_t) ((check_ut % USEC_PER_SEC) * NSEC_PER_USEC)
|
|
};
|
|
}
|
|
}
|
|
else {
|
|
netdata_log_error("Cannot nanosleep() for %"PRIu64" microseconds.", usec);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline collected_number uptime_from_boottime(void) {
|
|
#ifdef CLOCK_BOOTTIME_IS_AVAILABLE
|
|
return (collected_number)(now_boottime_usec() / USEC_PER_MS);
|
|
#else
|
|
netdata_log_error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static procfile *read_proc_uptime_ff = NULL;
|
|
static inline collected_number read_proc_uptime(char *filename) {
|
|
if(unlikely(!read_proc_uptime_ff)) {
|
|
read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
|
|
if(unlikely(!read_proc_uptime_ff)) return 0;
|
|
}
|
|
|
|
read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
|
|
if(unlikely(!read_proc_uptime_ff)) return 0;
|
|
|
|
if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
|
|
netdata_log_error("/proc/uptime has no lines.");
|
|
return 0;
|
|
}
|
|
if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
|
|
netdata_log_error("/proc/uptime has less than 1 word in it.");
|
|
return 0;
|
|
}
|
|
|
|
return (collected_number)(strtondd(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
|
|
}
|
|
|
|
inline collected_number uptime_msec(char *filename){
|
|
static int use_boottime = -1;
|
|
|
|
if(unlikely(use_boottime == -1)) {
|
|
collected_number uptime_boottime = uptime_from_boottime();
|
|
collected_number uptime_proc = read_proc_uptime(filename);
|
|
|
|
long long delta = (long long)uptime_boottime - (long long)uptime_proc;
|
|
if(delta < 0) delta = -delta;
|
|
|
|
if(delta <= 1000 && uptime_boottime != 0) {
|
|
procfile_close(read_proc_uptime_ff);
|
|
netdata_log_info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
|
|
use_boottime = 1;
|
|
}
|
|
else if(uptime_proc != 0) {
|
|
netdata_log_info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
|
|
use_boottime = 0;
|
|
}
|
|
else {
|
|
netdata_log_error("Cannot find any way to read uptime on this system.");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
collected_number uptime;
|
|
if(use_boottime)
|
|
uptime = uptime_from_boottime();
|
|
else
|
|
uptime = read_proc_uptime(filename);
|
|
|
|
return uptime;
|
|
}
|