0
0
Fork 0
mirror of https://github.com/slackhq/nebula.git synced 2025-01-11 03:48:12 +00:00
slackhq_nebula/firewall.go
Slack Security Team f22b4b584d Public Release
2019-11-19 17:00:20 +00:00

789 lines
18 KiB
Go

package nebula
import (
"encoding/binary"
"encoding/json"
"fmt"
"net"
"sync"
"time"
"crypto/sha256"
"encoding/hex"
"errors"
"reflect"
"strconv"
"strings"
"github.com/rcrowley/go-metrics"
"github.com/slackhq/nebula/cert"
)
const (
fwProtoAny = 0 // When we want to handle HOPOPT (0) we can change this, if ever
fwProtoTCP = 6
fwProtoUDP = 17
fwProtoICMP = 1
fwPortAny = 0 // Special value for matching `port: any`
fwPortFragment = -1 // Special value for matching `port: fragment`
)
const tcpACK = 0x10
const tcpFIN = 0x01
type FirewallInterface interface {
AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error
}
type conn struct {
Expires time.Time // Time when this conntrack entry will expire
Seq uint32 // If tcp rtt tracking is enabled this will be the seq we are looking for an ack
Sent time.Time // If tcp rtt tracking is enabled this will be when Seq was last set
}
// TODO: need conntrack max tracked connections handling
type Firewall struct {
Conns map[FirewallPacket]*conn
InRules *FirewallTable
OutRules *FirewallTable
//TODO: we should have many more options for TCP, an option for ICMP, and mimic the kernel a bit better
// https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
TCPTimeout time.Duration //linux: 5 days max
UDPTimeout time.Duration //linux: 180s max
DefaultTimeout time.Duration //linux: 600s
TimerWheel *TimerWheel
// Used to ensure we don't emit local packets for ips we don't own
localIps *CIDRTree
connMutex sync.Mutex
rules string
trackTCPRTT bool
metricTCPRTT metrics.Histogram
}
type FirewallTable struct {
TCP firewallPort
UDP firewallPort
ICMP firewallPort
AnyProto firewallPort
}
func newFirewallTable() *FirewallTable {
return &FirewallTable{
TCP: firewallPort{},
UDP: firewallPort{},
ICMP: firewallPort{},
AnyProto: firewallPort{},
}
}
type FirewallRule struct {
// Any makes Hosts, Groups, and CIDR irrelevant. CAName and CASha still need to be checked
Any bool
Hosts map[string]struct{}
Groups [][]string
CIDR *CIDRTree
CANames map[string]struct{}
CAShas map[string]struct{}
}
// Even though ports are uint16, int32 maps are faster for lookup
// Plus we can use `-1` for fragment rules
type firewallPort map[int32]*FirewallRule
type FirewallPacket struct {
LocalIP uint32
RemoteIP uint32
LocalPort uint16
RemotePort uint16
Protocol uint8
Fragment bool
}
func (fp *FirewallPacket) Copy() *FirewallPacket {
return &FirewallPacket{
LocalIP: fp.LocalIP,
RemoteIP: fp.RemoteIP,
LocalPort: fp.LocalPort,
RemotePort: fp.RemotePort,
Protocol: fp.Protocol,
Fragment: fp.Fragment,
}
}
func (fp FirewallPacket) MarshalJSON() ([]byte, error) {
var proto string
switch fp.Protocol {
case fwProtoTCP:
proto = "tcp"
case fwProtoICMP:
proto = "icmp"
case fwProtoUDP:
proto = "udp"
default:
proto = fmt.Sprintf("unknown %v", fp.Protocol)
}
return json.Marshal(m{
"LocalIP": int2ip(fp.LocalIP).String(),
"RemoteIP": int2ip(fp.RemoteIP).String(),
"LocalPort": fp.LocalPort,
"RemotePort": fp.RemotePort,
"Protocol": proto,
"Fragment": fp.Fragment,
})
}
// NewFirewall creates a new Firewall object. A TimerWheel is created for you from the provided timeouts.
func NewFirewall(tcpTimeout, UDPTimeout, defaultTimeout time.Duration, c *cert.NebulaCertificate) *Firewall {
//TODO: error on 0 duration
var min, max time.Duration
if tcpTimeout < UDPTimeout {
min = tcpTimeout
max = UDPTimeout
} else {
min = UDPTimeout
max = tcpTimeout
}
if defaultTimeout < min {
min = defaultTimeout
} else if defaultTimeout > max {
max = defaultTimeout
}
localIps := NewCIDRTree()
for _, ip := range c.Details.Ips {
localIps.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
localIps.AddCIDR(n, struct{}{})
}
return &Firewall{
Conns: make(map[FirewallPacket]*conn),
InRules: newFirewallTable(),
OutRules: newFirewallTable(),
TimerWheel: NewTimerWheel(min, max),
TCPTimeout: tcpTimeout,
UDPTimeout: UDPTimeout,
DefaultTimeout: defaultTimeout,
localIps: localIps,
metricTCPRTT: metrics.GetOrRegisterHistogram("network.tcp.rtt", nil, metrics.NewExpDecaySample(1028, 0.015)),
}
}
func NewFirewallFromConfig(nc *cert.NebulaCertificate, c *Config) (*Firewall, error) {
fw := NewFirewall(
c.GetDuration("firewall.conntrack.tcp_timeout", time.Duration(time.Minute*12)),
c.GetDuration("firewall.conntrack.udp_timeout", time.Duration(time.Minute*3)),
c.GetDuration("firewall.conntrack.default_timeout", time.Duration(time.Minute*10)),
nc,
//TODO: max_connections
)
err := AddFirewallRulesFromConfig(false, c, fw)
if err != nil {
return nil, err
}
err = AddFirewallRulesFromConfig(true, c, fw)
if err != nil {
return nil, err
}
return fw, nil
}
// AddRule properly creates the in memory rule structure for a firewall table.
func (f *Firewall) AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
// We need this rule string because we generate a hash. Removing this will break firewall reload.
ruleString := fmt.Sprintf(
"incoming: %v, proto: %v, startPort: %v, endPort: %v, groups: %v, host: %v, ip: %v, caName: %v, caSha: %s",
incoming, proto, startPort, endPort, groups, host, ip, caName, caSha,
)
f.rules += ruleString + "\n"
direction := "incoming"
if !incoming {
direction = "outgoing"
}
l.WithField("firewallRule", m{"direction": direction, "proto": proto, "startPort": startPort, "endPort": endPort, "groups": groups, "host": host, "ip": ip, "caName": caName, "caSha": caSha}).
Info("Firewall rule added")
var (
ft *FirewallTable
fp firewallPort
)
if incoming {
ft = f.InRules
} else {
ft = f.OutRules
}
switch proto {
case fwProtoTCP:
fp = ft.TCP
case fwProtoUDP:
fp = ft.UDP
case fwProtoICMP:
fp = ft.ICMP
case fwProtoAny:
fp = ft.AnyProto
default:
return fmt.Errorf("unknown protocol %v", proto)
}
return fp.addRule(startPort, endPort, groups, host, ip, caName, caSha)
}
// GetRuleHash returns a hash representation of all inbound and outbound rules
func (f *Firewall) GetRuleHash() string {
sum := sha256.Sum256([]byte(f.rules))
return hex.EncodeToString(sum[:])
}
func AddFirewallRulesFromConfig(inbound bool, config *Config, fw FirewallInterface) error {
var table string
if inbound {
table = "firewall.inbound"
} else {
table = "firewall.outbound"
}
r := config.Get(table)
if r == nil {
return nil
}
rs, ok := r.([]interface{})
if !ok {
return fmt.Errorf("%s failed to parse, should be an array of rules", table)
}
for i, t := range rs {
var groups []string
r, err := convertRule(t)
if err != nil {
return fmt.Errorf("%s rule #%v; %s", table, i, err)
}
if r.Code != "" && r.Port != "" {
return fmt.Errorf("%s rule #%v; only one of port or code should be provided", table, i)
}
if r.Host == "" && len(r.Groups) == 0 && r.Group == "" && r.Cidr == "" && r.CAName == "" && r.CASha == "" {
return fmt.Errorf("%s rule #%v; at least one of host, group, cidr, ca_name, or ca_sha must be provided", table, i)
}
if len(r.Groups) > 0 {
groups = r.Groups
}
if r.Group != "" {
// Check if we have both groups and group provided in the rule config
if len(groups) > 0 {
return fmt.Errorf("%s rule #%v; only one of group or groups should be defined, both provided", table, i)
}
groups = []string{r.Group}
}
var sPort, errPort string
if r.Code != "" {
errPort = "code"
sPort = r.Code
} else {
errPort = "port"
sPort = r.Port
}
startPort, endPort, err := parsePort(sPort)
if err != nil {
return fmt.Errorf("%s rule #%v; %s %s", table, i, errPort, err)
}
var proto uint8
switch r.Proto {
case "any":
proto = fwProtoAny
case "tcp":
proto = fwProtoTCP
case "udp":
proto = fwProtoUDP
case "icmp":
proto = fwProtoICMP
default:
return fmt.Errorf("%s rule #%v; proto was not understood; `%s`", table, i, r.Proto)
}
var cidr *net.IPNet
if r.Cidr != "" {
_, cidr, err = net.ParseCIDR(r.Cidr)
if err != nil {
return fmt.Errorf("%s rule #%v; cidr did not parse; %s", table, i, err)
}
}
err = fw.AddRule(inbound, proto, startPort, endPort, groups, r.Host, cidr, r.CAName, r.CASha)
if err != nil {
return fmt.Errorf("%s rule #%v; `%s`", table, i, err)
}
}
return nil
}
func (f *Firewall) Drop(packet []byte, fp FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
// Check if we spoke to this tuple, if we did then allow this packet
if f.inConns(packet, fp, incoming) {
return false
}
// Make sure we are supposed to be handling this local ip address
if f.localIps.Contains(fp.LocalIP) == nil {
return true
}
table := f.OutRules
if incoming {
table = f.InRules
}
// We now know which firewall table to check against
if !table.match(fp, incoming, c, caPool) {
return true
}
// We always want to conntrack since it is a faster operation
f.addConn(packet, fp, incoming)
return false
}
// Destroy cleans up any known cyclical references so the object can be free'd my GC. This should be called if a new
// firewall object is created
func (f *Firewall) Destroy() {
//TODO: clean references if/when needed
}
func (f *Firewall) EmitStats() {
conntrackCount := len(f.Conns)
metrics.GetOrRegisterGauge("firewall.conntrack.count", nil).Update(int64(conntrackCount))
}
func (f *Firewall) inConns(packet []byte, fp FirewallPacket, incoming bool) bool {
f.connMutex.Lock()
// Purge every time we test
ep, has := f.TimerWheel.Purge()
if has {
f.evict(ep)
}
c, ok := f.Conns[fp]
if !ok {
f.connMutex.Unlock()
return false
}
switch fp.Protocol {
case fwProtoTCP:
c.Expires = time.Now().Add(f.TCPTimeout)
if incoming {
f.checkTCPRTT(c, packet)
} else {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
c.Expires = time.Now().Add(f.UDPTimeout)
default:
c.Expires = time.Now().Add(f.DefaultTimeout)
}
f.connMutex.Unlock()
return true
}
func (f *Firewall) addConn(packet []byte, fp FirewallPacket, incoming bool) {
var timeout time.Duration
c := &conn{}
switch fp.Protocol {
case fwProtoTCP:
timeout = f.TCPTimeout
if !incoming {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
timeout = f.UDPTimeout
default:
timeout = f.DefaultTimeout
}
f.connMutex.Lock()
if _, ok := f.Conns[fp]; !ok {
f.TimerWheel.Add(fp, timeout)
}
c.Expires = time.Now().Add(timeout)
f.Conns[fp] = c
f.connMutex.Unlock()
}
// Evict checks if a conntrack entry has expired, if so it is removed, if not it is re-added to the wheel
// Caller must own the connMutex lock!
func (f *Firewall) evict(p FirewallPacket) {
//TODO: report a stat if the tcp rtt tracking was never resolved?
// Are we still tracking this conn?
t, ok := f.Conns[p]
if !ok {
return
}
newT := t.Expires.Sub(time.Now())
// Timeout is in the future, re-add the timer
if newT > 0 {
f.TimerWheel.Add(p, newT)
return
}
// This conn is done
delete(f.Conns, p)
}
func (ft *FirewallTable) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if ft.AnyProto.match(p, incoming, c, caPool) {
return true
}
switch p.Protocol {
case fwProtoTCP:
if ft.TCP.match(p, incoming, c, caPool) {
return true
}
case fwProtoUDP:
if ft.UDP.match(p, incoming, c, caPool) {
return true
}
case fwProtoICMP:
if ft.ICMP.match(p, incoming, c, caPool) {
return true
}
}
return false
}
func (fp firewallPort) addRule(startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
if startPort > endPort {
return fmt.Errorf("start port was lower than end port")
}
for i := startPort; i <= endPort; i++ {
if _, ok := fp[i]; !ok {
fp[i] = &FirewallRule{
Groups: make([][]string, 0),
Hosts: make(map[string]struct{}),
CIDR: NewCIDRTree(),
CANames: make(map[string]struct{}),
CAShas: make(map[string]struct{}),
}
}
if err := fp[i].addRule(groups, host, ip, caName, caSha); err != nil {
return err
}
}
return nil
}
func (fp firewallPort) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
// We don't have any allowed ports, bail
if fp == nil {
return false
}
var port int32
if p.Fragment {
port = fwPortFragment
} else if incoming {
port = int32(p.LocalPort)
} else {
port = int32(p.RemotePort)
}
if fp[port].match(p, c, caPool) {
return true
}
return fp[fwPortAny].match(p, c, caPool)
}
func (fr *FirewallRule) addRule(groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
if caName != "" {
fr.CANames[caName] = struct{}{}
}
if caSha != "" {
fr.CAShas[caSha] = struct{}{}
}
if fr.Any {
return nil
}
if fr.isAny(groups, host, ip) {
fr.Any = true
// If it's any we need to wipe out any pre-existing rules to save on memory
fr.Groups = make([][]string, 0)
fr.Hosts = make(map[string]struct{})
fr.CIDR = NewCIDRTree()
} else {
if len(groups) > 0 {
fr.Groups = append(fr.Groups, groups)
}
if host != "" {
fr.Hosts[host] = struct{}{}
}
if ip != nil {
fr.CIDR.AddCIDR(ip, struct{}{})
}
}
return nil
}
func (fr *FirewallRule) isAny(groups []string, host string, ip *net.IPNet) bool {
for _, group := range groups {
if group == "any" {
return true
}
}
if host == "any" {
return true
}
if ip != nil && ip.Contains(net.IPv4(0, 0, 0, 0)) {
return true
}
return false
}
func (fr *FirewallRule) match(p FirewallPacket, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if fr == nil {
return false
}
// CASha and CAName always need to be checked
if len(fr.CAShas) > 0 {
if _, ok := fr.CAShas[c.Details.Issuer]; !ok {
return false
}
}
if len(fr.CANames) > 0 {
s, err := caPool.GetCAForCert(c)
if err != nil {
return false
}
if _, ok := fr.CANames[s.Details.Name]; !ok {
return false
}
}
// Shortcut path for if groups, hosts, or cidr contained an `any`
if fr.Any {
return true
}
// Need any of group, host, or cidr to match
for _, sg := range fr.Groups {
found := false
for _, g := range sg {
if _, ok := c.Details.InvertedGroups[g]; !ok {
found = false
break
}
found = true
}
if found {
return true
}
}
if fr.Hosts != nil {
if _, ok := fr.Hosts[c.Details.Name]; ok {
return true
}
}
if fr.CIDR != nil && fr.CIDR.Contains(p.RemoteIP) != nil {
return true
}
// No host, group, or cidr matched, bye bye
return false
}
type rule struct {
Port string
Code string
Proto string
Host string
Group string
Groups []string
Cidr string
CAName string
CASha string
}
func convertRule(p interface{}) (rule, error) {
r := rule{}
m, ok := p.(map[interface{}]interface{})
if !ok {
return r, errors.New("could not parse rule")
}
toString := func(k string, m map[interface{}]interface{}) string {
v, ok := m[k]
if !ok {
return ""
}
return fmt.Sprintf("%v", v)
}
r.Port = toString("port", m)
r.Code = toString("code", m)
r.Proto = toString("proto", m)
r.Host = toString("host", m)
r.Group = toString("group", m)
r.Cidr = toString("cidr", m)
r.CAName = toString("ca_name", m)
r.CASha = toString("ca_sha", m)
if rg, ok := m["groups"]; ok {
switch reflect.TypeOf(rg).Kind() {
case reflect.Slice:
v := reflect.ValueOf(rg)
r.Groups = make([]string, v.Len())
for i := 0; i < v.Len(); i++ {
r.Groups[i] = v.Index(i).Interface().(string)
}
case reflect.String:
r.Groups = []string{rg.(string)}
default:
r.Groups = []string{fmt.Sprintf("%v", rg)}
}
}
return r, nil
}
func parsePort(s string) (startPort, endPort int32, err error) {
if s == "any" {
startPort = fwPortAny
endPort = fwPortAny
} else if s == "fragment" {
startPort = fwPortFragment
endPort = fwPortFragment
} else if strings.Contains(s, `-`) {
sPorts := strings.SplitN(s, `-`, 2)
sPorts[0] = strings.Trim(sPorts[0], " ")
sPorts[1] = strings.Trim(sPorts[1], " ")
if len(sPorts) != 2 || sPorts[0] == "" || sPorts[1] == "" {
return 0, 0, fmt.Errorf("appears to be a range but could not be parsed; `%s`", s)
}
rStartPort, err := strconv.Atoi(sPorts[0])
if err != nil {
return 0, 0, fmt.Errorf("beginning range was not a number; `%s`", sPorts[0])
}
rEndPort, err := strconv.Atoi(sPorts[1])
if err != nil {
return 0, 0, fmt.Errorf("ending range was not a number; `%s`", sPorts[1])
}
startPort = int32(rStartPort)
endPort = int32(rEndPort)
if startPort == fwPortAny {
endPort = fwPortAny
}
} else {
rPort, err := strconv.Atoi(s)
if err != nil {
return 0, 0, fmt.Errorf("was not a number; `%s`", s)
}
startPort = int32(rPort)
endPort = startPort
}
return
}
//TODO: write tests for these
func setTCPRTTTracking(c *conn, p []byte) {
if c.Seq != 0 {
return
}
ihl := int(p[0]&0x0f) << 2
// Don't track FIN packets
if uint8(p[ihl+13])&tcpFIN != 0 {
return
}
c.Seq = binary.BigEndian.Uint32(p[ihl+4 : ihl+8])
c.Sent = time.Now()
}
func (f *Firewall) checkTCPRTT(c *conn, p []byte) bool {
if c.Seq == 0 {
return false
}
ihl := int(p[0]&0x0f) << 2
if uint8(p[ihl+13])&tcpACK == 0 {
return false
}
// Deal with wrap around, signed int cuts the ack window in half
// 0 is a bad ack, no data acknowledged
// positive number is a bad ack, ack is over half the window away
if int32(c.Seq-binary.BigEndian.Uint32(p[ihl+8:ihl+12])) >= 0 {
return false
}
f.metricTCPRTT.Update(time.Since(c.Sent).Nanoseconds())
c.Seq = 0
return true
}