0
0
Fork 0
mirror of https://github.com/slackhq/nebula.git synced 2025-01-26 18:08:49 +00:00
slackhq_nebula/firewall.go
Wade Simmons add1b21777
only create a CIDRTree for each host if necessary (#198)
A CIDRTree can be expensive to create, so only do it if we need
it. If the remote host only has one IP address and no subnets, just do
an exact IP match instead.

Fixes: #171
2020-03-02 16:21:33 -05:00

854 lines
19 KiB
Go

package nebula
import (
"encoding/binary"
"encoding/json"
"fmt"
"net"
"sync"
"time"
"crypto/sha256"
"encoding/hex"
"errors"
"reflect"
"strconv"
"strings"
"github.com/rcrowley/go-metrics"
"github.com/slackhq/nebula/cert"
)
const (
fwProtoAny = 0 // When we want to handle HOPOPT (0) we can change this, if ever
fwProtoTCP = 6
fwProtoUDP = 17
fwProtoICMP = 1
fwPortAny = 0 // Special value for matching `port: any`
fwPortFragment = -1 // Special value for matching `port: fragment`
)
const tcpACK = 0x10
const tcpFIN = 0x01
type FirewallInterface interface {
AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error
}
type conn struct {
Expires time.Time // Time when this conntrack entry will expire
Seq uint32 // If tcp rtt tracking is enabled this will be the seq we are looking for an ack
Sent time.Time // If tcp rtt tracking is enabled this will be when Seq was last set
}
// TODO: need conntrack max tracked connections handling
type Firewall struct {
Conns map[FirewallPacket]*conn
InRules *FirewallTable
OutRules *FirewallTable
//TODO: we should have many more options for TCP, an option for ICMP, and mimic the kernel a bit better
// https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
TCPTimeout time.Duration //linux: 5 days max
UDPTimeout time.Duration //linux: 180s max
DefaultTimeout time.Duration //linux: 600s
TimerWheel *TimerWheel
// Used to ensure we don't emit local packets for ips we don't own
localIps *CIDRTree
connMutex sync.Mutex
rules string
trackTCPRTT bool
metricTCPRTT metrics.Histogram
}
type FirewallTable struct {
TCP firewallPort
UDP firewallPort
ICMP firewallPort
AnyProto firewallPort
}
func newFirewallTable() *FirewallTable {
return &FirewallTable{
TCP: firewallPort{},
UDP: firewallPort{},
ICMP: firewallPort{},
AnyProto: firewallPort{},
}
}
type FirewallCA struct {
Any *FirewallRule
CANames map[string]*FirewallRule
CAShas map[string]*FirewallRule
}
type FirewallRule struct {
// Any makes Hosts, Groups, and CIDR irrelevant
Any bool
Hosts map[string]struct{}
Groups [][]string
CIDR *CIDRTree
}
// Even though ports are uint16, int32 maps are faster for lookup
// Plus we can use `-1` for fragment rules
type firewallPort map[int32]*FirewallCA
type FirewallPacket struct {
LocalIP uint32
RemoteIP uint32
LocalPort uint16
RemotePort uint16
Protocol uint8
Fragment bool
}
func (fp *FirewallPacket) Copy() *FirewallPacket {
return &FirewallPacket{
LocalIP: fp.LocalIP,
RemoteIP: fp.RemoteIP,
LocalPort: fp.LocalPort,
RemotePort: fp.RemotePort,
Protocol: fp.Protocol,
Fragment: fp.Fragment,
}
}
func (fp FirewallPacket) MarshalJSON() ([]byte, error) {
var proto string
switch fp.Protocol {
case fwProtoTCP:
proto = "tcp"
case fwProtoICMP:
proto = "icmp"
case fwProtoUDP:
proto = "udp"
default:
proto = fmt.Sprintf("unknown %v", fp.Protocol)
}
return json.Marshal(m{
"LocalIP": int2ip(fp.LocalIP).String(),
"RemoteIP": int2ip(fp.RemoteIP).String(),
"LocalPort": fp.LocalPort,
"RemotePort": fp.RemotePort,
"Protocol": proto,
"Fragment": fp.Fragment,
})
}
// NewFirewall creates a new Firewall object. A TimerWheel is created for you from the provided timeouts.
func NewFirewall(tcpTimeout, UDPTimeout, defaultTimeout time.Duration, c *cert.NebulaCertificate) *Firewall {
//TODO: error on 0 duration
var min, max time.Duration
if tcpTimeout < UDPTimeout {
min = tcpTimeout
max = UDPTimeout
} else {
min = UDPTimeout
max = tcpTimeout
}
if defaultTimeout < min {
min = defaultTimeout
} else if defaultTimeout > max {
max = defaultTimeout
}
localIps := NewCIDRTree()
for _, ip := range c.Details.Ips {
localIps.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
localIps.AddCIDR(n, struct{}{})
}
return &Firewall{
Conns: make(map[FirewallPacket]*conn),
InRules: newFirewallTable(),
OutRules: newFirewallTable(),
TimerWheel: NewTimerWheel(min, max),
TCPTimeout: tcpTimeout,
UDPTimeout: UDPTimeout,
DefaultTimeout: defaultTimeout,
localIps: localIps,
metricTCPRTT: metrics.GetOrRegisterHistogram("network.tcp.rtt", nil, metrics.NewExpDecaySample(1028, 0.015)),
}
}
func NewFirewallFromConfig(nc *cert.NebulaCertificate, c *Config) (*Firewall, error) {
fw := NewFirewall(
c.GetDuration("firewall.conntrack.tcp_timeout", time.Minute*12),
c.GetDuration("firewall.conntrack.udp_timeout", time.Minute*3),
c.GetDuration("firewall.conntrack.default_timeout", time.Minute*10),
nc,
//TODO: max_connections
)
err := AddFirewallRulesFromConfig(false, c, fw)
if err != nil {
return nil, err
}
err = AddFirewallRulesFromConfig(true, c, fw)
if err != nil {
return nil, err
}
return fw, nil
}
// AddRule properly creates the in memory rule structure for a firewall table.
func (f *Firewall) AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
// We need this rule string because we generate a hash. Removing this will break firewall reload.
ruleString := fmt.Sprintf(
"incoming: %v, proto: %v, startPort: %v, endPort: %v, groups: %v, host: %v, ip: %v, caName: %v, caSha: %s",
incoming, proto, startPort, endPort, groups, host, ip, caName, caSha,
)
f.rules += ruleString + "\n"
direction := "incoming"
if !incoming {
direction = "outgoing"
}
l.WithField("firewallRule", m{"direction": direction, "proto": proto, "startPort": startPort, "endPort": endPort, "groups": groups, "host": host, "ip": ip, "caName": caName, "caSha": caSha}).
Info("Firewall rule added")
var (
ft *FirewallTable
fp firewallPort
)
if incoming {
ft = f.InRules
} else {
ft = f.OutRules
}
switch proto {
case fwProtoTCP:
fp = ft.TCP
case fwProtoUDP:
fp = ft.UDP
case fwProtoICMP:
fp = ft.ICMP
case fwProtoAny:
fp = ft.AnyProto
default:
return fmt.Errorf("unknown protocol %v", proto)
}
return fp.addRule(startPort, endPort, groups, host, ip, caName, caSha)
}
// GetRuleHash returns a hash representation of all inbound and outbound rules
func (f *Firewall) GetRuleHash() string {
sum := sha256.Sum256([]byte(f.rules))
return hex.EncodeToString(sum[:])
}
func AddFirewallRulesFromConfig(inbound bool, config *Config, fw FirewallInterface) error {
var table string
if inbound {
table = "firewall.inbound"
} else {
table = "firewall.outbound"
}
r := config.Get(table)
if r == nil {
return nil
}
rs, ok := r.([]interface{})
if !ok {
return fmt.Errorf("%s failed to parse, should be an array of rules", table)
}
for i, t := range rs {
var groups []string
r, err := convertRule(t, table, i)
if err != nil {
return fmt.Errorf("%s rule #%v; %s", table, i, err)
}
if r.Code != "" && r.Port != "" {
return fmt.Errorf("%s rule #%v; only one of port or code should be provided", table, i)
}
if r.Host == "" && len(r.Groups) == 0 && r.Group == "" && r.Cidr == "" && r.CAName == "" && r.CASha == "" {
return fmt.Errorf("%s rule #%v; at least one of host, group, cidr, ca_name, or ca_sha must be provided", table, i)
}
if len(r.Groups) > 0 {
groups = r.Groups
}
if r.Group != "" {
// Check if we have both groups and group provided in the rule config
if len(groups) > 0 {
return fmt.Errorf("%s rule #%v; only one of group or groups should be defined, both provided", table, i)
}
groups = []string{r.Group}
}
var sPort, errPort string
if r.Code != "" {
errPort = "code"
sPort = r.Code
} else {
errPort = "port"
sPort = r.Port
}
startPort, endPort, err := parsePort(sPort)
if err != nil {
return fmt.Errorf("%s rule #%v; %s %s", table, i, errPort, err)
}
var proto uint8
switch r.Proto {
case "any":
proto = fwProtoAny
case "tcp":
proto = fwProtoTCP
case "udp":
proto = fwProtoUDP
case "icmp":
proto = fwProtoICMP
default:
return fmt.Errorf("%s rule #%v; proto was not understood; `%s`", table, i, r.Proto)
}
var cidr *net.IPNet
if r.Cidr != "" {
_, cidr, err = net.ParseCIDR(r.Cidr)
if err != nil {
return fmt.Errorf("%s rule #%v; cidr did not parse; %s", table, i, err)
}
}
err = fw.AddRule(inbound, proto, startPort, endPort, groups, r.Host, cidr, r.CAName, r.CASha)
if err != nil {
return fmt.Errorf("%s rule #%v; `%s`", table, i, err)
}
}
return nil
}
func (f *Firewall) Drop(packet []byte, fp FirewallPacket, incoming bool, h *HostInfo, caPool *cert.NebulaCAPool) bool {
// Check if we spoke to this tuple, if we did then allow this packet
if f.inConns(packet, fp, incoming) {
return false
}
// Make sure remote address matches nebula certificate
if remoteCidr := h.remoteCidr; remoteCidr != nil {
if remoteCidr.Contains(fp.RemoteIP) == nil {
return true
}
} else {
// Simple case: Certificate has one IP and no subnets
if fp.RemoteIP != h.hostId {
return true
}
}
// Make sure we are supposed to be handling this local ip address
if f.localIps.Contains(fp.LocalIP) == nil {
return true
}
table := f.OutRules
if incoming {
table = f.InRules
}
// We now know which firewall table to check against
if !table.match(fp, incoming, h.ConnectionState.peerCert, caPool) {
return true
}
// We always want to conntrack since it is a faster operation
f.addConn(packet, fp, incoming)
return false
}
// Destroy cleans up any known cyclical references so the object can be free'd my GC. This should be called if a new
// firewall object is created
func (f *Firewall) Destroy() {
//TODO: clean references if/when needed
}
func (f *Firewall) EmitStats() {
conntrackCount := len(f.Conns)
metrics.GetOrRegisterGauge("firewall.conntrack.count", nil).Update(int64(conntrackCount))
}
func (f *Firewall) inConns(packet []byte, fp FirewallPacket, incoming bool) bool {
f.connMutex.Lock()
// Purge every time we test
ep, has := f.TimerWheel.Purge()
if has {
f.evict(ep)
}
c, ok := f.Conns[fp]
if !ok {
f.connMutex.Unlock()
return false
}
switch fp.Protocol {
case fwProtoTCP:
c.Expires = time.Now().Add(f.TCPTimeout)
if incoming {
f.checkTCPRTT(c, packet)
} else {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
c.Expires = time.Now().Add(f.UDPTimeout)
default:
c.Expires = time.Now().Add(f.DefaultTimeout)
}
f.connMutex.Unlock()
return true
}
func (f *Firewall) addConn(packet []byte, fp FirewallPacket, incoming bool) {
var timeout time.Duration
c := &conn{}
switch fp.Protocol {
case fwProtoTCP:
timeout = f.TCPTimeout
if !incoming {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
timeout = f.UDPTimeout
default:
timeout = f.DefaultTimeout
}
f.connMutex.Lock()
if _, ok := f.Conns[fp]; !ok {
f.TimerWheel.Add(fp, timeout)
}
c.Expires = time.Now().Add(timeout)
f.Conns[fp] = c
f.connMutex.Unlock()
}
// Evict checks if a conntrack entry has expired, if so it is removed, if not it is re-added to the wheel
// Caller must own the connMutex lock!
func (f *Firewall) evict(p FirewallPacket) {
//TODO: report a stat if the tcp rtt tracking was never resolved?
// Are we still tracking this conn?
t, ok := f.Conns[p]
if !ok {
return
}
newT := t.Expires.Sub(time.Now())
// Timeout is in the future, re-add the timer
if newT > 0 {
f.TimerWheel.Add(p, newT)
return
}
// This conn is done
delete(f.Conns, p)
}
func (ft *FirewallTable) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if ft.AnyProto.match(p, incoming, c, caPool) {
return true
}
switch p.Protocol {
case fwProtoTCP:
if ft.TCP.match(p, incoming, c, caPool) {
return true
}
case fwProtoUDP:
if ft.UDP.match(p, incoming, c, caPool) {
return true
}
case fwProtoICMP:
if ft.ICMP.match(p, incoming, c, caPool) {
return true
}
}
return false
}
func (fp firewallPort) addRule(startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
if startPort > endPort {
return fmt.Errorf("start port was lower than end port")
}
for i := startPort; i <= endPort; i++ {
if _, ok := fp[i]; !ok {
fp[i] = &FirewallCA{
CANames: make(map[string]*FirewallRule),
CAShas: make(map[string]*FirewallRule),
}
}
if err := fp[i].addRule(groups, host, ip, caName, caSha); err != nil {
return err
}
}
return nil
}
func (fp firewallPort) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
// We don't have any allowed ports, bail
if fp == nil {
return false
}
var port int32
if p.Fragment {
port = fwPortFragment
} else if incoming {
port = int32(p.LocalPort)
} else {
port = int32(p.RemotePort)
}
if fp[port].match(p, c, caPool) {
return true
}
return fp[fwPortAny].match(p, c, caPool)
}
func (fc *FirewallCA) addRule(groups []string, host string, ip *net.IPNet, caName, caSha string) error {
fr := func() *FirewallRule {
return &FirewallRule{
Hosts: make(map[string]struct{}),
Groups: make([][]string, 0),
CIDR: NewCIDRTree(),
}
}
if caSha == "" && caName == "" {
if fc.Any == nil {
fc.Any = fr()
}
return fc.Any.addRule(groups, host, ip)
}
if caSha != "" {
if _, ok := fc.CAShas[caSha]; !ok {
fc.CAShas[caSha] = fr()
}
err := fc.CAShas[caSha].addRule(groups, host, ip)
if err != nil {
return err
}
}
if caName != "" {
if _, ok := fc.CANames[caName]; !ok {
fc.CANames[caName] = fr()
}
err := fc.CANames[caName].addRule(groups, host, ip)
if err != nil {
return err
}
}
return nil
}
func (fc *FirewallCA) match(p FirewallPacket, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if fc == nil {
return false
}
if fc.Any.match(p, c) {
return true
}
if t, ok := fc.CAShas[c.Details.Issuer]; ok {
if t.match(p, c) {
return true
}
}
s, err := caPool.GetCAForCert(c)
if err != nil {
return false
}
return fc.CANames[s.Details.Name].match(p, c)
}
func (fr *FirewallRule) addRule(groups []string, host string, ip *net.IPNet) error {
if fr.Any {
return nil
}
if fr.isAny(groups, host, ip) {
fr.Any = true
// If it's any we need to wipe out any pre-existing rules to save on memory
fr.Groups = make([][]string, 0)
fr.Hosts = make(map[string]struct{})
fr.CIDR = NewCIDRTree()
} else {
if len(groups) > 0 {
fr.Groups = append(fr.Groups, groups)
}
if host != "" {
fr.Hosts[host] = struct{}{}
}
if ip != nil {
fr.CIDR.AddCIDR(ip, struct{}{})
}
}
return nil
}
func (fr *FirewallRule) isAny(groups []string, host string, ip *net.IPNet) bool {
if len(groups) == 0 && host == "" && ip == nil {
return true
}
for _, group := range groups {
if group == "any" {
return true
}
}
if host == "any" {
return true
}
if ip != nil && ip.Contains(net.IPv4(0, 0, 0, 0)) {
return true
}
return false
}
func (fr *FirewallRule) match(p FirewallPacket, c *cert.NebulaCertificate) bool {
if fr == nil {
return false
}
// Shortcut path for if groups, hosts, or cidr contained an `any`
if fr.Any {
return true
}
// Need any of group, host, or cidr to match
for _, sg := range fr.Groups {
found := false
for _, g := range sg {
if _, ok := c.Details.InvertedGroups[g]; !ok {
found = false
break
}
found = true
}
if found {
return true
}
}
if fr.Hosts != nil {
if _, ok := fr.Hosts[c.Details.Name]; ok {
return true
}
}
if fr.CIDR != nil && fr.CIDR.Contains(p.RemoteIP) != nil {
return true
}
// No host, group, or cidr matched, bye bye
return false
}
type rule struct {
Port string
Code string
Proto string
Host string
Group string
Groups []string
Cidr string
CAName string
CASha string
}
func convertRule(p interface{}, table string, i int) (rule, error) {
r := rule{}
m, ok := p.(map[interface{}]interface{})
if !ok {
return r, errors.New("could not parse rule")
}
toString := func(k string, m map[interface{}]interface{}) string {
v, ok := m[k]
if !ok {
return ""
}
return fmt.Sprintf("%v", v)
}
r.Port = toString("port", m)
r.Code = toString("code", m)
r.Proto = toString("proto", m)
r.Host = toString("host", m)
r.Cidr = toString("cidr", m)
r.CAName = toString("ca_name", m)
r.CASha = toString("ca_sha", m)
// Make sure group isn't an array
if v, ok := m["group"].([]interface{}); ok {
if len(v) > 1 {
return r, errors.New("group should contain a single value, an array with more than one entry was provided")
}
l.Warnf("%s rule #%v; group was an array with a single value, converting to simple value", table, i)
m["group"] = v[0]
}
r.Group = toString("group", m)
if rg, ok := m["groups"]; ok {
switch reflect.TypeOf(rg).Kind() {
case reflect.Slice:
v := reflect.ValueOf(rg)
r.Groups = make([]string, v.Len())
for i := 0; i < v.Len(); i++ {
r.Groups[i] = v.Index(i).Interface().(string)
}
case reflect.String:
r.Groups = []string{rg.(string)}
default:
r.Groups = []string{fmt.Sprintf("%v", rg)}
}
}
return r, nil
}
func parsePort(s string) (startPort, endPort int32, err error) {
if s == "any" {
startPort = fwPortAny
endPort = fwPortAny
} else if s == "fragment" {
startPort = fwPortFragment
endPort = fwPortFragment
} else if strings.Contains(s, `-`) {
sPorts := strings.SplitN(s, `-`, 2)
sPorts[0] = strings.Trim(sPorts[0], " ")
sPorts[1] = strings.Trim(sPorts[1], " ")
if len(sPorts) != 2 || sPorts[0] == "" || sPorts[1] == "" {
return 0, 0, fmt.Errorf("appears to be a range but could not be parsed; `%s`", s)
}
rStartPort, err := strconv.Atoi(sPorts[0])
if err != nil {
return 0, 0, fmt.Errorf("beginning range was not a number; `%s`", sPorts[0])
}
rEndPort, err := strconv.Atoi(sPorts[1])
if err != nil {
return 0, 0, fmt.Errorf("ending range was not a number; `%s`", sPorts[1])
}
startPort = int32(rStartPort)
endPort = int32(rEndPort)
if startPort == fwPortAny {
endPort = fwPortAny
}
} else {
rPort, err := strconv.Atoi(s)
if err != nil {
return 0, 0, fmt.Errorf("was not a number; `%s`", s)
}
startPort = int32(rPort)
endPort = startPort
}
return
}
//TODO: write tests for these
func setTCPRTTTracking(c *conn, p []byte) {
if c.Seq != 0 {
return
}
ihl := int(p[0]&0x0f) << 2
// Don't track FIN packets
if p[ihl+13]&tcpFIN != 0 {
return
}
c.Seq = binary.BigEndian.Uint32(p[ihl+4 : ihl+8])
c.Sent = time.Now()
}
func (f *Firewall) checkTCPRTT(c *conn, p []byte) bool {
if c.Seq == 0 {
return false
}
ihl := int(p[0]&0x0f) << 2
if p[ihl+13]&tcpACK == 0 {
return false
}
// Deal with wrap around, signed int cuts the ack window in half
// 0 is a bad ack, no data acknowledged
// positive number is a bad ack, ack is over half the window away
if int32(c.Seq-binary.BigEndian.Uint32(p[ihl+8:ihl+12])) >= 0 {
return false
}
f.metricTCPRTT.Update(time.Since(c.Sent).Nanoseconds())
c.Seq = 0
return true
}