mirror of
https://github.com/slackhq/nebula.git
synced 2025-01-27 10:19:04 +00:00
169cdbbd35
* Immediately forward packets received on the nebula TUN device with a destination of our Nebula VPN IP right back out that same TUN device on MacOS.
355 lines
12 KiB
Go
355 lines
12 KiB
Go
package nebula
|
|
|
|
import (
|
|
"sync/atomic"
|
|
|
|
"github.com/flynn/noise"
|
|
"github.com/sirupsen/logrus"
|
|
"github.com/slackhq/nebula/firewall"
|
|
"github.com/slackhq/nebula/header"
|
|
"github.com/slackhq/nebula/iputil"
|
|
"github.com/slackhq/nebula/udp"
|
|
)
|
|
|
|
func (f *Interface) consumeInsidePacket(packet []byte, fwPacket *firewall.Packet, nb, out []byte, q int, localCache firewall.ConntrackCache) {
|
|
err := newPacket(packet, false, fwPacket)
|
|
if err != nil {
|
|
f.l.WithField("packet", packet).Debugf("Error while validating outbound packet: %s", err)
|
|
return
|
|
}
|
|
|
|
// Ignore local broadcast packets
|
|
if f.dropLocalBroadcast && fwPacket.RemoteIP == f.localBroadcast {
|
|
return
|
|
}
|
|
|
|
if fwPacket.RemoteIP == f.myVpnIp {
|
|
// Immediately forward packets from self to self.
|
|
// This should only happen on Darwin-based hosts, which routes packets from
|
|
// the Nebula IP to the Nebula IP through the Nebula TUN device.
|
|
if immediatelyForwardToSelf {
|
|
_, err := f.readers[q].Write(packet)
|
|
if err != nil {
|
|
f.l.WithError(err).Error("Failed to forward to tun")
|
|
}
|
|
}
|
|
// Otherwise, drop. On linux, we should never see these packets - Linux
|
|
// routes packets from the nebula IP to the nebula IP through the loopback device.
|
|
return
|
|
}
|
|
|
|
// Ignore broadcast packets
|
|
if f.dropMulticast && isMulticast(fwPacket.RemoteIP) {
|
|
return
|
|
}
|
|
|
|
hostinfo := f.getOrHandshake(fwPacket.RemoteIP)
|
|
if hostinfo == nil {
|
|
if f.l.Level >= logrus.DebugLevel {
|
|
f.l.WithField("vpnIp", fwPacket.RemoteIP).
|
|
WithField("fwPacket", fwPacket).
|
|
Debugln("dropping outbound packet, vpnIp not in our CIDR or in unsafe routes")
|
|
}
|
|
return
|
|
}
|
|
ci := hostinfo.ConnectionState
|
|
|
|
if ci.ready == false {
|
|
// Because we might be sending stored packets, lock here to stop new things going to
|
|
// the packet queue.
|
|
ci.queueLock.Lock()
|
|
if !ci.ready {
|
|
hostinfo.cachePacket(f.l, header.Message, 0, packet, f.sendMessageNow, f.cachedPacketMetrics)
|
|
ci.queueLock.Unlock()
|
|
return
|
|
}
|
|
ci.queueLock.Unlock()
|
|
}
|
|
|
|
dropReason := f.firewall.Drop(packet, *fwPacket, false, hostinfo, f.caPool, localCache)
|
|
if dropReason == nil {
|
|
f.sendNoMetrics(header.Message, 0, ci, hostinfo, nil, packet, nb, out, q)
|
|
|
|
} else if f.l.Level >= logrus.DebugLevel {
|
|
hostinfo.logger(f.l).
|
|
WithField("fwPacket", fwPacket).
|
|
WithField("reason", dropReason).
|
|
Debugln("dropping outbound packet")
|
|
}
|
|
}
|
|
|
|
func (f *Interface) Handshake(vpnIp iputil.VpnIp) {
|
|
f.getOrHandshake(vpnIp)
|
|
}
|
|
|
|
// getOrHandshake returns nil if the vpnIp is not routable
|
|
func (f *Interface) getOrHandshake(vpnIp iputil.VpnIp) *HostInfo {
|
|
//TODO: we can find contains without converting back to bytes
|
|
if f.hostMap.vpnCIDR.Contains(vpnIp.ToIP()) == false {
|
|
vpnIp = f.inside.RouteFor(vpnIp)
|
|
if vpnIp == 0 {
|
|
return nil
|
|
}
|
|
}
|
|
hostinfo, err := f.hostMap.PromoteBestQueryVpnIp(vpnIp, f)
|
|
|
|
//if err != nil || hostinfo.ConnectionState == nil {
|
|
if err != nil {
|
|
hostinfo, err = f.handshakeManager.pendingHostMap.QueryVpnIp(vpnIp)
|
|
if err != nil {
|
|
hostinfo = f.handshakeManager.AddVpnIp(vpnIp, f.initHostInfo)
|
|
}
|
|
}
|
|
ci := hostinfo.ConnectionState
|
|
|
|
if ci != nil && ci.eKey != nil && ci.ready {
|
|
return hostinfo
|
|
}
|
|
|
|
// Handshake is not ready, we need to grab the lock now before we start the handshake process
|
|
hostinfo.Lock()
|
|
defer hostinfo.Unlock()
|
|
|
|
// Double check, now that we have the lock
|
|
ci = hostinfo.ConnectionState
|
|
if ci != nil && ci.eKey != nil && ci.ready {
|
|
return hostinfo
|
|
}
|
|
|
|
// If we have already created the handshake packet, we don't want to call the function at all.
|
|
if !hostinfo.HandshakeReady {
|
|
ixHandshakeStage0(f, vpnIp, hostinfo)
|
|
// FIXME: Maybe make XX selectable, but probably not since psk makes it nearly pointless for us.
|
|
//xx_handshakeStage0(f, ip, hostinfo)
|
|
|
|
// If this is a static host, we don't need to wait for the HostQueryReply
|
|
// We can trigger the handshake right now
|
|
if _, ok := f.lightHouse.GetStaticHostList()[vpnIp]; ok {
|
|
select {
|
|
case f.handshakeManager.trigger <- vpnIp:
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
|
|
return hostinfo
|
|
}
|
|
|
|
// initHostInfo is the init function to pass to (*HandshakeManager).AddVpnIP that
|
|
// will create the initial Noise ConnectionState
|
|
func (f *Interface) initHostInfo(hostinfo *HostInfo) {
|
|
hostinfo.ConnectionState = f.newConnectionState(f.l, true, noise.HandshakeIX, []byte{}, 0)
|
|
}
|
|
|
|
func (f *Interface) sendMessageNow(t header.MessageType, st header.MessageSubType, hostInfo *HostInfo, p, nb, out []byte) {
|
|
fp := &firewall.Packet{}
|
|
err := newPacket(p, false, fp)
|
|
if err != nil {
|
|
f.l.Warnf("error while parsing outgoing packet for firewall check; %v", err)
|
|
return
|
|
}
|
|
|
|
// check if packet is in outbound fw rules
|
|
dropReason := f.firewall.Drop(p, *fp, false, hostInfo, f.caPool, nil)
|
|
if dropReason != nil {
|
|
if f.l.Level >= logrus.DebugLevel {
|
|
f.l.WithField("fwPacket", fp).
|
|
WithField("reason", dropReason).
|
|
Debugln("dropping cached packet")
|
|
}
|
|
return
|
|
}
|
|
|
|
f.sendNoMetrics(header.Message, st, hostInfo.ConnectionState, hostInfo, nil, p, nb, out, 0)
|
|
}
|
|
|
|
// SendMessageToVpnIp handles real ip:port lookup and sends to the current best known address for vpnIp
|
|
func (f *Interface) SendMessageToVpnIp(t header.MessageType, st header.MessageSubType, vpnIp iputil.VpnIp, p, nb, out []byte) {
|
|
hostInfo := f.getOrHandshake(vpnIp)
|
|
if hostInfo == nil {
|
|
if f.l.Level >= logrus.DebugLevel {
|
|
f.l.WithField("vpnIp", vpnIp).
|
|
Debugln("dropping SendMessageToVpnIp, vpnIp not in our CIDR or in unsafe routes")
|
|
}
|
|
return
|
|
}
|
|
|
|
if !hostInfo.ConnectionState.ready {
|
|
// Because we might be sending stored packets, lock here to stop new things going to
|
|
// the packet queue.
|
|
hostInfo.ConnectionState.queueLock.Lock()
|
|
if !hostInfo.ConnectionState.ready {
|
|
hostInfo.cachePacket(f.l, t, st, p, f.sendMessageToVpnIp, f.cachedPacketMetrics)
|
|
hostInfo.ConnectionState.queueLock.Unlock()
|
|
return
|
|
}
|
|
hostInfo.ConnectionState.queueLock.Unlock()
|
|
}
|
|
|
|
f.sendMessageToVpnIp(t, st, hostInfo, p, nb, out)
|
|
return
|
|
}
|
|
|
|
func (f *Interface) sendMessageToVpnIp(t header.MessageType, st header.MessageSubType, hostInfo *HostInfo, p, nb, out []byte) {
|
|
f.send(t, st, hostInfo.ConnectionState, hostInfo, p, nb, out)
|
|
}
|
|
|
|
func (f *Interface) send(t header.MessageType, st header.MessageSubType, ci *ConnectionState, hostinfo *HostInfo, p, nb, out []byte) {
|
|
f.messageMetrics.Tx(t, st, 1)
|
|
f.sendNoMetrics(t, st, ci, hostinfo, nil, p, nb, out, 0)
|
|
}
|
|
|
|
func (f *Interface) sendTo(t header.MessageType, st header.MessageSubType, ci *ConnectionState, hostinfo *HostInfo, remote *udp.Addr, p, nb, out []byte) {
|
|
f.messageMetrics.Tx(t, st, 1)
|
|
f.sendNoMetrics(t, st, ci, hostinfo, remote, p, nb, out, 0)
|
|
}
|
|
|
|
// sendVia sends a payload through a Relay tunnel. No authentication or encryption is done
|
|
// to the payload for the ultimate target host, making this a useful method for sending
|
|
// handshake messages to peers through relay tunnels.
|
|
// via is the HostInfo through which the message is relayed.
|
|
// ad is the plaintext data to authenticate, but not encrypt
|
|
// nb is a buffer used to store the nonce value, re-used for performance reasons.
|
|
// out is a buffer used to store the result of the Encrypt operation
|
|
// q indicates which writer to use to send the packet.
|
|
func (f *Interface) SendVia(viaIfc interface{},
|
|
relayIfc interface{},
|
|
ad,
|
|
nb,
|
|
out []byte,
|
|
nocopy bool,
|
|
) {
|
|
via := viaIfc.(*HostInfo)
|
|
relay := relayIfc.(*Relay)
|
|
c := atomic.AddUint64(&via.ConnectionState.atomicMessageCounter, 1)
|
|
|
|
out = header.Encode(out, header.Version, header.Message, header.MessageRelay, relay.RemoteIndex, c)
|
|
f.connectionManager.Out(via.vpnIp)
|
|
|
|
// Authenticate the header and payload, but do not encrypt for this message type.
|
|
// The payload consists of the inner, unencrypted Nebula header, as well as the end-to-end encrypted payload.
|
|
if len(out)+len(ad)+via.ConnectionState.eKey.Overhead() > cap(out) {
|
|
via.logger(f.l).
|
|
WithField("outCap", cap(out)).
|
|
WithField("payloadLen", len(ad)).
|
|
WithField("headerLen", len(out)).
|
|
WithField("cipherOverhead", via.ConnectionState.eKey.Overhead()).
|
|
Error("SendVia out buffer not large enough for relay")
|
|
return
|
|
}
|
|
|
|
// The header bytes are written to the 'out' slice; Grow the slice to hold the header and associated data payload.
|
|
offset := len(out)
|
|
out = out[:offset+len(ad)]
|
|
|
|
// In one call path, the associated data _is_ already stored in out. In other call paths, the associated data must
|
|
// be copied into 'out'.
|
|
if !nocopy {
|
|
copy(out[offset:], ad)
|
|
}
|
|
|
|
var err error
|
|
out, err = via.ConnectionState.eKey.EncryptDanger(out, out, nil, c, nb)
|
|
if err != nil {
|
|
via.logger(f.l).WithError(err).Info("Failed to EncryptDanger in sendVia")
|
|
return
|
|
}
|
|
err = f.writers[0].WriteTo(out, via.remote)
|
|
if err != nil {
|
|
via.logger(f.l).WithError(err).Info("Failed to WriteTo in sendVia")
|
|
}
|
|
}
|
|
|
|
func (f *Interface) sendNoMetrics(t header.MessageType, st header.MessageSubType, ci *ConnectionState, hostinfo *HostInfo, remote *udp.Addr, p, nb, out []byte, q int) {
|
|
if ci.eKey == nil {
|
|
//TODO: log warning
|
|
return
|
|
}
|
|
useRelay := remote == nil && hostinfo.remote == nil
|
|
fullOut := out
|
|
|
|
if useRelay {
|
|
if len(out) < header.Len {
|
|
// out always has a capacity of mtu, but not always a length greater than the header.Len.
|
|
// Grow it to make sure the next operation works.
|
|
out = out[:header.Len]
|
|
}
|
|
// Save a header's worth of data at the front of the 'out' buffer.
|
|
out = out[header.Len:]
|
|
}
|
|
|
|
//TODO: enable if we do more than 1 tun queue
|
|
//ci.writeLock.Lock()
|
|
c := atomic.AddUint64(&ci.atomicMessageCounter, 1)
|
|
|
|
//l.WithField("trace", string(debug.Stack())).Error("out Header ", &Header{Version, t, st, 0, hostinfo.remoteIndexId, c}, p)
|
|
out = header.Encode(out, header.Version, t, st, hostinfo.remoteIndexId, c)
|
|
f.connectionManager.Out(hostinfo.vpnIp)
|
|
|
|
// Query our LH if we haven't since the last time we've been rebound, this will cause the remote to punch against
|
|
// all our IPs and enable a faster roaming.
|
|
if t != header.CloseTunnel && hostinfo.lastRebindCount != f.rebindCount {
|
|
//NOTE: there is an update hole if a tunnel isn't used and exactly 256 rebinds occur before the tunnel is
|
|
// finally used again. This tunnel would eventually be torn down and recreated if this action didn't help.
|
|
f.lightHouse.QueryServer(hostinfo.vpnIp, f)
|
|
hostinfo.lastRebindCount = f.rebindCount
|
|
if f.l.Level >= logrus.DebugLevel {
|
|
f.l.WithField("vpnIp", hostinfo.vpnIp).Debug("Lighthouse update triggered for punch due to rebind counter")
|
|
}
|
|
}
|
|
|
|
var err error
|
|
out, err = ci.eKey.EncryptDanger(out, out, p, c, nb)
|
|
//TODO: see above note on lock
|
|
//ci.writeLock.Unlock()
|
|
if err != nil {
|
|
hostinfo.logger(f.l).WithError(err).
|
|
WithField("udpAddr", remote).WithField("counter", c).
|
|
WithField("attemptedCounter", c).
|
|
Error("Failed to encrypt outgoing packet")
|
|
return
|
|
}
|
|
|
|
if remote != nil {
|
|
err = f.writers[q].WriteTo(out, remote)
|
|
if err != nil {
|
|
hostinfo.logger(f.l).WithError(err).
|
|
WithField("udpAddr", remote).Error("Failed to write outgoing packet")
|
|
}
|
|
} else if hostinfo.remote != nil {
|
|
err = f.writers[q].WriteTo(out, hostinfo.remote)
|
|
if err != nil {
|
|
hostinfo.logger(f.l).WithError(err).
|
|
WithField("udpAddr", remote).Error("Failed to write outgoing packet")
|
|
}
|
|
} else {
|
|
// Try to send via a relay
|
|
for _, relayIP := range hostinfo.relayState.CopyRelayIps() {
|
|
relayHostInfo, err := f.hostMap.QueryVpnIp(relayIP)
|
|
if err != nil {
|
|
hostinfo.logger(f.l).WithField("relayIp", relayIP).WithError(err).Info("sendNoMetrics failed to find HostInfo")
|
|
continue
|
|
}
|
|
relay, ok := relayHostInfo.relayState.QueryRelayForByIp(hostinfo.vpnIp)
|
|
if !ok {
|
|
hostinfo.logger(f.l).
|
|
WithField("relayIp", relayHostInfo.vpnIp).
|
|
WithField("relayTarget", hostinfo.vpnIp).
|
|
Info("sendNoMetrics relay missing object for target")
|
|
continue
|
|
}
|
|
f.SendVia(relayHostInfo, relay, out, nb, fullOut[:header.Len+len(out)], true)
|
|
break
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
func isMulticast(ip iputil.VpnIp) bool {
|
|
// Class D multicast
|
|
if (((ip >> 24) & 0xff) & 0xf0) == 0xe0 {
|
|
return true
|
|
}
|
|
|
|
return false
|
|
}
|