0
0
Fork 0
mirror of https://github.com/slackhq/nebula.git synced 2025-01-25 17:48:25 +00:00
slackhq_nebula/connection_state.go
Wade Simmons e0185c4b01
Support NIST curve P256 (#769)
* Support NIST curve P256

This change adds support for NIST curve P256. When you use `nebula-cert ca`
or `nebula-cert keygen`, you can specify `-curve P256` to enable it. The
curve to use is based on the curve defined in your CA certificate.

Internally, we use ECDSA P256 to sign certificates, and ECDH P256 to do
Noise handshakes. P256 is not supported natively in Noise Protocol, so
we define `DHP256` in the `noiseutil` package to implement support for
it.

You cannot have a mixed network of Curve25519 and P256 certificates,
since the Noise protocol will only attempt to parse using the Curve
defined in the host's certificate.

* verify the curves match in VerifyPrivateKey

This would have failed anyways once we tried to actually use the bytes
in the private key, but its better to detect the issue up front with
a better error message.

* add cert.Curve argument to Sign method

* fix mismerge

* use crypto/ecdh

This is the preferred method for doing ECDH functions now, and also has
a boringcrypto specific codepath.

* remove other ecdh uses of crypto/elliptic

use crypto/ecdh instead
2023-05-04 17:50:23 -04:00

88 lines
2.3 KiB
Go

package nebula
import (
"crypto/rand"
"encoding/json"
"sync"
"sync/atomic"
"github.com/flynn/noise"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
"github.com/slackhq/nebula/noiseutil"
)
const ReplayWindow = 1024
type ConnectionState struct {
eKey *NebulaCipherState
dKey *NebulaCipherState
H *noise.HandshakeState
certState *CertState
peerCert *cert.NebulaCertificate
initiator bool
messageCounter atomic.Uint64
window *Bits
queueLock sync.Mutex
writeLock sync.Mutex
ready bool
}
func (f *Interface) newConnectionState(l *logrus.Logger, initiator bool, pattern noise.HandshakePattern, psk []byte, pskStage int) *ConnectionState {
var dhFunc noise.DHFunc
curCertState := f.certState.Load()
switch curCertState.certificate.Details.Curve {
case cert.Curve_CURVE25519:
dhFunc = noise.DH25519
case cert.Curve_P256:
dhFunc = noiseutil.DHP256
default:
l.Errorf("invalid curve: %s", curCertState.certificate.Details.Curve)
return nil
}
cs := noise.NewCipherSuite(dhFunc, noiseutil.CipherAESGCM, noise.HashSHA256)
if f.cipher == "chachapoly" {
cs = noise.NewCipherSuite(dhFunc, noise.CipherChaChaPoly, noise.HashSHA256)
}
static := noise.DHKey{Private: curCertState.privateKey, Public: curCertState.publicKey}
b := NewBits(ReplayWindow)
// Clear out bit 0, we never transmit it and we don't want it showing as packet loss
b.Update(l, 0)
hs, err := noise.NewHandshakeState(noise.Config{
CipherSuite: cs,
Random: rand.Reader,
Pattern: pattern,
Initiator: initiator,
StaticKeypair: static,
PresharedKey: psk,
PresharedKeyPlacement: pskStage,
})
if err != nil {
return nil
}
// The queue and ready params prevent a counter race that would happen when
// sending stored packets and simultaneously accepting new traffic.
ci := &ConnectionState{
H: hs,
initiator: initiator,
window: b,
ready: false,
certState: curCertState,
}
return ci
}
func (cs *ConnectionState) MarshalJSON() ([]byte, error) {
return json.Marshal(m{
"certificate": cs.peerCert,
"initiator": cs.initiator,
"message_counter": cs.messageCounter.Load(),
"ready": cs.ready,
})
}