0
0
Fork 0
mirror of https://github.com/slackhq/nebula.git synced 2025-01-26 18:08:49 +00:00
slackhq_nebula/hostmap.go
2023-12-19 11:58:31 -06:00

707 lines
18 KiB
Go

package nebula
import (
"errors"
"net"
"sync"
"sync/atomic"
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
"github.com/slackhq/nebula/cidr"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/iputil"
"github.com/slackhq/nebula/udp"
)
// const ProbeLen = 100
const defaultPromoteEvery = 1000 // Count of packets sent before we try moving a tunnel to a preferred underlay ip address
const defaultReQueryEvery = 5000 // Count of packets sent before re-querying a hostinfo to the lighthouse
const defaultReQueryWait = time.Minute // Minimum amount of seconds to wait before re-querying a hostinfo the lighthouse. Evaluated every ReQueryEvery
const MaxRemotes = 10
const maxRecvError = 4
// MaxHostInfosPerVpnIp is the max number of hostinfos we will track for a given vpn ip
// 5 allows for an initial handshake and each host pair re-handshaking twice
const MaxHostInfosPerVpnIp = 5
// How long we should prevent roaming back to the previous IP.
// This helps prevent flapping due to packets already in flight
const RoamingSuppressSeconds = 2
const (
Requested = iota
PeerRequested
Established
)
const (
Unknowntype = iota
ForwardingType
TerminalType
)
type Relay struct {
Type int
State int
LocalIndex uint32
RemoteIndex uint32
PeerIp iputil.VpnIp
}
type HostMap struct {
sync.RWMutex //Because we concurrently read and write to our maps
Indexes map[uint32]*HostInfo
Relays map[uint32]*HostInfo // Maps a Relay IDX to a Relay HostInfo object
RemoteIndexes map[uint32]*HostInfo
Hosts map[iputil.VpnIp]*HostInfo
preferredRanges []*net.IPNet
vpnCIDR *net.IPNet
metricsEnabled bool
l *logrus.Logger
}
// For synchronization, treat the pointed-to Relay struct as immutable. To edit the Relay
// struct, make a copy of an existing value, edit the fileds in the copy, and
// then store a pointer to the new copy in both realyForBy* maps.
type RelayState struct {
sync.RWMutex
relays map[iputil.VpnIp]struct{} // Set of VpnIp's of Hosts to use as relays to access this peer
relayForByIp map[iputil.VpnIp]*Relay // Maps VpnIps of peers for which this HostInfo is a relay to some Relay info
relayForByIdx map[uint32]*Relay // Maps a local index to some Relay info
}
func (rs *RelayState) DeleteRelay(ip iputil.VpnIp) {
rs.Lock()
defer rs.Unlock()
delete(rs.relays, ip)
}
func (rs *RelayState) CopyAllRelayFor() []*Relay {
rs.RLock()
defer rs.RUnlock()
ret := make([]*Relay, 0, len(rs.relayForByIdx))
for _, r := range rs.relayForByIdx {
ret = append(ret, r)
}
return ret
}
func (rs *RelayState) GetRelayForByIp(ip iputil.VpnIp) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIp[ip]
return r, ok
}
func (rs *RelayState) InsertRelayTo(ip iputil.VpnIp) {
rs.Lock()
defer rs.Unlock()
rs.relays[ip] = struct{}{}
}
func (rs *RelayState) CopyRelayIps() []iputil.VpnIp {
rs.RLock()
defer rs.RUnlock()
ret := make([]iputil.VpnIp, 0, len(rs.relays))
for ip := range rs.relays {
ret = append(ret, ip)
}
return ret
}
func (rs *RelayState) CopyRelayForIps() []iputil.VpnIp {
rs.RLock()
defer rs.RUnlock()
currentRelays := make([]iputil.VpnIp, 0, len(rs.relayForByIp))
for relayIp := range rs.relayForByIp {
currentRelays = append(currentRelays, relayIp)
}
return currentRelays
}
func (rs *RelayState) CopyRelayForIdxs() []uint32 {
rs.RLock()
defer rs.RUnlock()
ret := make([]uint32, 0, len(rs.relayForByIdx))
for i := range rs.relayForByIdx {
ret = append(ret, i)
}
return ret
}
func (rs *RelayState) RemoveRelay(localIdx uint32) (iputil.VpnIp, bool) {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIdx[localIdx]
if !ok {
return iputil.VpnIp(0), false
}
delete(rs.relayForByIdx, localIdx)
delete(rs.relayForByIp, r.PeerIp)
return r.PeerIp, true
}
func (rs *RelayState) CompleteRelayByIP(vpnIp iputil.VpnIp, remoteIdx uint32) bool {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIp[vpnIp]
if !ok {
return false
}
newRelay := *r
newRelay.State = Established
newRelay.RemoteIndex = remoteIdx
rs.relayForByIdx[r.LocalIndex] = &newRelay
rs.relayForByIp[r.PeerIp] = &newRelay
return true
}
func (rs *RelayState) CompleteRelayByIdx(localIdx uint32, remoteIdx uint32) (*Relay, bool) {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIdx[localIdx]
if !ok {
return nil, false
}
newRelay := *r
newRelay.State = Established
newRelay.RemoteIndex = remoteIdx
rs.relayForByIdx[r.LocalIndex] = &newRelay
rs.relayForByIp[r.PeerIp] = &newRelay
return &newRelay, true
}
func (rs *RelayState) QueryRelayForByIp(vpnIp iputil.VpnIp) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIp[vpnIp]
return r, ok
}
func (rs *RelayState) QueryRelayForByIdx(idx uint32) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIdx[idx]
return r, ok
}
func (rs *RelayState) InsertRelay(ip iputil.VpnIp, idx uint32, r *Relay) {
rs.Lock()
defer rs.Unlock()
rs.relayForByIp[ip] = r
rs.relayForByIdx[idx] = r
}
type HostInfo struct {
remote *udp.Addr
remotes *RemoteList
promoteCounter atomic.Uint32
ConnectionState *ConnectionState
remoteIndexId uint32
localIndexId uint32
vpnIp iputil.VpnIp
recvError atomic.Uint32
remoteCidr *cidr.Tree4[struct{}]
relayState RelayState
// HandshakePacket records the packets used to create this hostinfo
// We need these to avoid replayed handshake packets creating new hostinfos which causes churn
HandshakePacket map[uint8][]byte
// nextLHQuery is the earliest we can ask the lighthouse for new information.
// This is used to limit lighthouse re-queries in chatty clients
nextLHQuery atomic.Int64
// lastRebindCount is the other side of Interface.rebindCount, if these values don't match then we need to ask LH
// for a punch from the remote end of this tunnel. The goal being to prime their conntrack for our traffic just like
// with a handshake
lastRebindCount int8
// lastHandshakeTime records the time the remote side told us about at the stage when the handshake was completed locally
// Stage 1 packet will contain it if I am a responder, stage 2 packet if I am an initiator
// This is used to avoid an attack where a handshake packet is replayed after some time
lastHandshakeTime uint64
lastRoam time.Time
lastRoamRemote *udp.Addr
// Used to track other hostinfos for this vpn ip since only 1 can be primary
// Synchronised via hostmap lock and not the hostinfo lock.
next, prev *HostInfo
}
type ViaSender struct {
relayHI *HostInfo // relayHI is the host info object of the relay
remoteIdx uint32 // remoteIdx is the index included in the header of the received packet
relay *Relay // relay contains the rest of the relay information, including the PeerIP of the host trying to communicate with us.
}
type cachedPacket struct {
messageType header.MessageType
messageSubType header.MessageSubType
callback packetCallback
packet []byte
}
type packetCallback func(t header.MessageType, st header.MessageSubType, h *HostInfo, p, nb, out []byte)
type cachedPacketMetrics struct {
sent metrics.Counter
dropped metrics.Counter
}
func NewHostMap(l *logrus.Logger, vpnCIDR *net.IPNet, preferredRanges []*net.IPNet) *HostMap {
h := map[iputil.VpnIp]*HostInfo{}
i := map[uint32]*HostInfo{}
r := map[uint32]*HostInfo{}
relays := map[uint32]*HostInfo{}
m := HostMap{
Indexes: i,
Relays: relays,
RemoteIndexes: r,
Hosts: h,
preferredRanges: preferredRanges,
vpnCIDR: vpnCIDR,
l: l,
}
return &m
}
// EmitStats reports host, index, and relay counts to the stats collection system
func (hm *HostMap) EmitStats() {
hm.RLock()
hostLen := len(hm.Hosts)
indexLen := len(hm.Indexes)
remoteIndexLen := len(hm.RemoteIndexes)
relaysLen := len(hm.Relays)
hm.RUnlock()
metrics.GetOrRegisterGauge("hostmap.main.hosts", nil).Update(int64(hostLen))
metrics.GetOrRegisterGauge("hostmap.main.indexes", nil).Update(int64(indexLen))
metrics.GetOrRegisterGauge("hostmap.main.remoteIndexes", nil).Update(int64(remoteIndexLen))
metrics.GetOrRegisterGauge("hostmap.main.relayIndexes", nil).Update(int64(relaysLen))
}
func (hm *HostMap) RemoveRelay(localIdx uint32) {
hm.Lock()
_, ok := hm.Relays[localIdx]
if !ok {
hm.Unlock()
return
}
delete(hm.Relays, localIdx)
hm.Unlock()
}
// DeleteHostInfo will fully unlink the hostinfo and return true if it was the final hostinfo for this vpn ip
func (hm *HostMap) DeleteHostInfo(hostinfo *HostInfo) bool {
// Delete the host itself, ensuring it's not modified anymore
hm.Lock()
// If we have a previous or next hostinfo then we are not the last one for this vpn ip
final := (hostinfo.next == nil && hostinfo.prev == nil)
hm.unlockedDeleteHostInfo(hostinfo)
hm.Unlock()
return final
}
func (hm *HostMap) MakePrimary(hostinfo *HostInfo) {
hm.Lock()
defer hm.Unlock()
hm.unlockedMakePrimary(hostinfo)
}
func (hm *HostMap) unlockedMakePrimary(hostinfo *HostInfo) {
oldHostinfo := hm.Hosts[hostinfo.vpnIp]
if oldHostinfo == hostinfo {
return
}
if hostinfo.prev != nil {
hostinfo.prev.next = hostinfo.next
}
if hostinfo.next != nil {
hostinfo.next.prev = hostinfo.prev
}
hm.Hosts[hostinfo.vpnIp] = hostinfo
if oldHostinfo == nil {
return
}
hostinfo.next = oldHostinfo
oldHostinfo.prev = hostinfo
hostinfo.prev = nil
}
func (hm *HostMap) unlockedDeleteHostInfo(hostinfo *HostInfo) {
primary, ok := hm.Hosts[hostinfo.vpnIp]
if ok && primary == hostinfo {
// The vpnIp pointer points to the same hostinfo as the local index id, we can remove it
delete(hm.Hosts, hostinfo.vpnIp)
if len(hm.Hosts) == 0 {
hm.Hosts = map[iputil.VpnIp]*HostInfo{}
}
if hostinfo.next != nil {
// We had more than 1 hostinfo at this vpnip, promote the next in the list to primary
hm.Hosts[hostinfo.vpnIp] = hostinfo.next
// It is primary, there is no previous hostinfo now
hostinfo.next.prev = nil
}
} else {
// Relink if we were in the middle of multiple hostinfos for this vpn ip
if hostinfo.prev != nil {
hostinfo.prev.next = hostinfo.next
}
if hostinfo.next != nil {
hostinfo.next.prev = hostinfo.prev
}
}
hostinfo.next = nil
hostinfo.prev = nil
// The remote index uses index ids outside our control so lets make sure we are only removing
// the remote index pointer here if it points to the hostinfo we are deleting
hostinfo2, ok := hm.RemoteIndexes[hostinfo.remoteIndexId]
if ok && hostinfo2 == hostinfo {
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
if len(hm.RemoteIndexes) == 0 {
hm.RemoteIndexes = map[uint32]*HostInfo{}
}
}
delete(hm.Indexes, hostinfo.localIndexId)
if len(hm.Indexes) == 0 {
hm.Indexes = map[uint32]*HostInfo{}
}
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapTotalSize": len(hm.Hosts),
"vpnIp": hostinfo.vpnIp, "indexNumber": hostinfo.localIndexId, "remoteIndexNumber": hostinfo.remoteIndexId}).
Debug("Hostmap hostInfo deleted")
}
for _, localRelayIdx := range hostinfo.relayState.CopyRelayForIdxs() {
delete(hm.Relays, localRelayIdx)
}
}
func (hm *HostMap) QueryIndex(index uint32) *HostInfo {
hm.RLock()
if h, ok := hm.Indexes[index]; ok {
hm.RUnlock()
return h
} else {
hm.RUnlock()
return nil
}
}
func (hm *HostMap) QueryRelayIndex(index uint32) *HostInfo {
hm.RLock()
if h, ok := hm.Relays[index]; ok {
hm.RUnlock()
return h
} else {
hm.RUnlock()
return nil
}
}
func (hm *HostMap) QueryReverseIndex(index uint32) *HostInfo {
hm.RLock()
if h, ok := hm.RemoteIndexes[index]; ok {
hm.RUnlock()
return h
} else {
hm.RUnlock()
return nil
}
}
func (hm *HostMap) QueryVpnIp(vpnIp iputil.VpnIp) *HostInfo {
return hm.queryVpnIp(vpnIp, nil)
}
func (hm *HostMap) QueryVpnIpRelayFor(targetIp, relayHostIp iputil.VpnIp) (*HostInfo, *Relay, error) {
hm.RLock()
defer hm.RUnlock()
h, ok := hm.Hosts[relayHostIp]
if !ok {
return nil, nil, errors.New("unable to find host")
}
for h != nil {
r, ok := h.relayState.QueryRelayForByIp(targetIp)
if ok && r.State == Established {
return h, r, nil
}
h = h.next
}
return nil, nil, errors.New("unable to find host with relay")
}
func (hm *HostMap) queryVpnIp(vpnIp iputil.VpnIp, promoteIfce *Interface) *HostInfo {
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; ok {
hm.RUnlock()
// Do not attempt promotion if you are a lighthouse
if promoteIfce != nil && !promoteIfce.lightHouse.amLighthouse {
h.TryPromoteBest(hm.preferredRanges, promoteIfce)
}
return h
}
hm.RUnlock()
return nil
}
// unlockedAddHostInfo assumes you have a write-lock and will add a hostinfo object to the hostmap Indexes and RemoteIndexes maps.
// If an entry exists for the Hosts table (vpnIp -> hostinfo) then the provided hostinfo will be made primary
func (hm *HostMap) unlockedAddHostInfo(hostinfo *HostInfo, f *Interface) {
if f.serveDns {
remoteCert := hostinfo.ConnectionState.peerCert
dnsR.Add(remoteCert.Details.Name+".", remoteCert.Details.Ips[0].IP.String())
}
existing := hm.Hosts[hostinfo.vpnIp]
hm.Hosts[hostinfo.vpnIp] = hostinfo
if existing != nil {
hostinfo.next = existing
existing.prev = hostinfo
}
hm.Indexes[hostinfo.localIndexId] = hostinfo
hm.RemoteIndexes[hostinfo.remoteIndexId] = hostinfo
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"vpnIp": hostinfo.vpnIp, "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": hostinfo.localIndexId, "hostId": hostinfo.vpnIp}}).
Debug("Hostmap vpnIp added")
}
i := 1
check := hostinfo
for check != nil {
if i > MaxHostInfosPerVpnIp {
hm.unlockedDeleteHostInfo(check)
}
check = check.next
i++
}
}
func (hm *HostMap) GetPreferredRanges() []*net.IPNet {
return hm.preferredRanges
}
func (hm *HostMap) ForEachVpnIp(f controlEach) {
hm.RLock()
defer hm.RUnlock()
for _, v := range hm.Hosts {
f(v)
}
}
func (hm *HostMap) ForEachIndex(f controlEach) {
hm.RLock()
defer hm.RUnlock()
for _, v := range hm.Indexes {
f(v)
}
}
// TryPromoteBest handles re-querying lighthouses and probing for better paths
// NOTE: It is an error to call this if you are a lighthouse since they should not roam clients!
func (i *HostInfo) TryPromoteBest(preferredRanges []*net.IPNet, ifce *Interface) {
c := i.promoteCounter.Add(1)
if c%ifce.tryPromoteEvery.Load() == 0 {
remote := i.remote
// return early if we are already on a preferred remote
if remote != nil {
rIP := remote.IP
for _, l := range preferredRanges {
if l.Contains(rIP) {
return
}
}
}
i.remotes.ForEach(preferredRanges, func(addr *udp.Addr, preferred bool) {
if remote != nil && (addr == nil || !preferred) {
return
}
// Try to send a test packet to that host, this should
// cause it to detect a roaming event and switch remotes
ifce.sendTo(header.Test, header.TestRequest, i.ConnectionState, i, addr, []byte(""), make([]byte, 12, 12), make([]byte, mtu))
})
}
// Re query our lighthouses for new remotes occasionally
if c%ifce.reQueryEvery.Load() == 0 && ifce.lightHouse != nil {
now := time.Now().UnixNano()
if now < i.nextLHQuery.Load() {
return
}
i.nextLHQuery.Store(now + ifce.reQueryWait.Load())
ifce.lightHouse.QueryServer(i.vpnIp)
}
}
func (i *HostInfo) GetCert() *cert.NebulaCertificate {
if i.ConnectionState != nil {
return i.ConnectionState.peerCert
}
return nil
}
func (i *HostInfo) SetRemote(remote *udp.Addr) {
// We copy here because we likely got this remote from a source that reuses the object
if !i.remote.Equals(remote) {
i.remote = remote.Copy()
i.remotes.LearnRemote(i.vpnIp, remote.Copy())
}
}
// SetRemoteIfPreferred returns true if the remote was changed. The lastRoam
// time on the HostInfo will also be updated.
func (i *HostInfo) SetRemoteIfPreferred(hm *HostMap, newRemote *udp.Addr) bool {
if newRemote == nil {
// relays have nil udp Addrs
return false
}
currentRemote := i.remote
if currentRemote == nil {
i.SetRemote(newRemote)
return true
}
// NOTE: We do this loop here instead of calling `isPreferred` in
// remote_list.go so that we only have to loop over preferredRanges once.
newIsPreferred := false
for _, l := range hm.preferredRanges {
// return early if we are already on a preferred remote
if l.Contains(currentRemote.IP) {
return false
}
if l.Contains(newRemote.IP) {
newIsPreferred = true
}
}
if newIsPreferred {
// Consider this a roaming event
i.lastRoam = time.Now()
i.lastRoamRemote = currentRemote.Copy()
i.SetRemote(newRemote)
return true
}
return false
}
func (i *HostInfo) RecvErrorExceeded() bool {
if i.recvError.Add(1) >= maxRecvError {
return true
}
return true
}
func (i *HostInfo) CreateRemoteCIDR(c *cert.NebulaCertificate) {
if len(c.Details.Ips) == 1 && len(c.Details.Subnets) == 0 {
// Simple case, no CIDRTree needed
return
}
remoteCidr := cidr.NewTree4[struct{}]()
for _, ip := range c.Details.Ips {
remoteCidr.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
remoteCidr.AddCIDR(n, struct{}{})
}
i.remoteCidr = remoteCidr
}
func (i *HostInfo) logger(l *logrus.Logger) *logrus.Entry {
if i == nil {
return logrus.NewEntry(l)
}
li := l.WithField("vpnIp", i.vpnIp).
WithField("localIndex", i.localIndexId).
WithField("remoteIndex", i.remoteIndexId)
if connState := i.ConnectionState; connState != nil {
if peerCert := connState.peerCert; peerCert != nil {
li = li.WithField("certName", peerCert.Details.Name)
}
}
return li
}
// Utility functions
func localIps(l *logrus.Logger, allowList *LocalAllowList) *[]net.IP {
//FIXME: This function is pretty garbage
var ips []net.IP
ifaces, _ := net.Interfaces()
for _, i := range ifaces {
allow := allowList.AllowName(i.Name)
if l.Level >= logrus.TraceLevel {
l.WithField("interfaceName", i.Name).WithField("allow", allow).Trace("localAllowList.AllowName")
}
if !allow {
continue
}
addrs, _ := i.Addrs()
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
//continue
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
//TODO: Filtering out link local for now, this is probably the most correct thing
//TODO: Would be nice to filter out SLAAC MAC based ips as well
if ip.IsLoopback() == false && !ip.IsLinkLocalUnicast() {
allow := allowList.Allow(ip)
if l.Level >= logrus.TraceLevel {
l.WithField("localIp", ip).WithField("allow", allow).Trace("localAllowList.Allow")
}
if !allow {
continue
}
ips = append(ips, ip)
}
}
}
return &ips
}