mirror of
https://github.com/netdata/netdata.git
synced 2025-04-26 13:54:48 +00:00
Add two functions that allow someone to start/stop ML. (#15185)
* Add two functions that allow someone to start/stop ML. * Shutdown ML after stopping collector services * Remove unnecessary mutex from ml charts. There's already a spinlock that protects the chart when a someone calls rrdset_done(). * Use a lightweight spinlock instead of a mutext for ML dimensions.
This commit is contained in:
parent
e12b0d8aba
commit
c76538e2f0
8 changed files with 199 additions and 79 deletions
collectors
daemon
database/sqlite
ml
|
@ -395,16 +395,17 @@
|
|||
#define ML_CHART_PRIO_DETECTOR_EVENTS 39183
|
||||
|
||||
// [netdata.ml] charts
|
||||
#define NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS 890001
|
||||
#define NETDATA_ML_CHART_PRIO_METRIC_TYPES 890002
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_STATUS 890003
|
||||
#define NETDATA_ML_CHART_RUNNING 890001
|
||||
#define NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS 890002
|
||||
#define NETDATA_ML_CHART_PRIO_METRIC_TYPES 890003
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_STATUS 890004
|
||||
|
||||
#define NETDATA_ML_CHART_PRIO_PREDICTION_USAGE 890004
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_USAGE 890005
|
||||
#define NETDATA_ML_CHART_PRIO_PREDICTION_USAGE 890005
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_USAGE 890006
|
||||
|
||||
#define NETDATA_ML_CHART_PRIO_QUEUE_STATS 890006
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS 890007
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_RESULTS 890008
|
||||
#define NETDATA_ML_CHART_PRIO_QUEUE_STATS 890007
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS 890008
|
||||
#define NETDATA_ML_CHART_PRIO_TRAINING_RESULTS 890009
|
||||
|
||||
#define NETDATA_ML_CHART_FAMILY "machine learning"
|
||||
#define NETDATA_ML_PLUGIN "ml.plugin"
|
||||
|
|
|
@ -344,11 +344,6 @@ void netdata_cleanup_and_exit(int ret) {
|
|||
|
||||
webrtc_close_all_connections();
|
||||
|
||||
delta_shutdown_time("disable ML detection and training threads");
|
||||
|
||||
ml_stop_threads();
|
||||
ml_fini();
|
||||
|
||||
delta_shutdown_time("disable maintenance, new queries, new web requests, new streaming connections and aclk");
|
||||
|
||||
service_signal_exit(
|
||||
|
@ -377,6 +372,11 @@ void netdata_cleanup_and_exit(int ret) {
|
|||
| SERVICE_STREAMING
|
||||
, 3 * USEC_PER_SEC);
|
||||
|
||||
delta_shutdown_time("disable ML detection and training threads");
|
||||
|
||||
ml_stop_threads();
|
||||
ml_fini();
|
||||
|
||||
delta_shutdown_time("stop context thread");
|
||||
|
||||
timeout = !service_wait_exit(
|
||||
|
|
|
@ -1485,7 +1485,6 @@ static inline void queue_metadata_cmd(enum metadata_opcode opcode, const void *p
|
|||
cmd.param[1] = param1;
|
||||
cmd.completion = NULL;
|
||||
metadata_enq_cmd(&metasync_worker, &cmd);
|
||||
|
||||
}
|
||||
|
||||
// Public
|
||||
|
|
111
ml/ad_charts.cc
111
ml/ad_charts.cc
|
@ -183,6 +183,41 @@ void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats
|
|||
|
||||
rrdset_done(host->dimensions_rs);
|
||||
}
|
||||
|
||||
// ML running
|
||||
{
|
||||
if (!host->ml_running_rs) {
|
||||
char id_buf[1024];
|
||||
char name_buf[1024];
|
||||
|
||||
snprintfz(id_buf, 1024, "ml_running_on_%s", localhost->machine_guid);
|
||||
snprintfz(name_buf, 1024, "ml_running_on_%s", rrdhost_hostname(localhost));
|
||||
|
||||
host->ml_running_rs = rrdset_create(
|
||||
host->rh,
|
||||
"anomaly_detection", // type
|
||||
id_buf, // id
|
||||
name_buf, // name
|
||||
"anomaly_detection", // family
|
||||
"anomaly_detection.ml_running", // ctx
|
||||
"ML running", // title
|
||||
"boolean", // units
|
||||
NETDATA_ML_PLUGIN, // plugin
|
||||
NETDATA_ML_MODULE_DETECTION, // module
|
||||
NETDATA_ML_CHART_RUNNING, // priority
|
||||
localhost->rrd_update_every, // update_every
|
||||
RRDSET_TYPE_LINE // chart_type
|
||||
);
|
||||
rrdset_flag_set(host->ml_running_rs, RRDSET_FLAG_ANOMALY_DETECTION);
|
||||
|
||||
host->ml_running_rd =
|
||||
rrddim_add(host->ml_running_rs, "ml_running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
|
||||
}
|
||||
|
||||
rrddim_set_by_pointer(host->ml_running_rs,
|
||||
host->ml_running_rd, host->ml_running);
|
||||
rrdset_done(host->ml_running_rs);
|
||||
}
|
||||
}
|
||||
|
||||
void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) {
|
||||
|
@ -260,47 +295,55 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number
|
|||
/*
|
||||
* Compute the values of the dimensions based on the host rate chart
|
||||
*/
|
||||
ONEWAYALLOC *OWA = onewayalloc_create(0);
|
||||
time_t Now = now_realtime_sec();
|
||||
time_t Before = Now - host->rh->rrd_update_every;
|
||||
time_t After = Before - Cfg.anomaly_detection_query_duration;
|
||||
RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
|
||||
if (host->ml_running) {
|
||||
ONEWAYALLOC *OWA = onewayalloc_create(0);
|
||||
time_t Now = now_realtime_sec();
|
||||
time_t Before = Now - host->rh->rrd_update_every;
|
||||
time_t After = Before - Cfg.anomaly_detection_query_duration;
|
||||
RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
|
||||
|
||||
RRDR *R = rrd2rrdr_legacy(
|
||||
OWA,
|
||||
host->anomaly_rate_rs,
|
||||
1 /* points wanted */,
|
||||
After,
|
||||
Before,
|
||||
Cfg.anomaly_detection_grouping_method,
|
||||
0 /* resampling time */,
|
||||
Options, "anomaly_rate",
|
||||
NULL /* group options */,
|
||||
0, /* timeout */
|
||||
0, /* tier */
|
||||
QUERY_SOURCE_ML,
|
||||
STORAGE_PRIORITY_SYNCHRONOUS
|
||||
);
|
||||
RRDR *R = rrd2rrdr_legacy(
|
||||
OWA,
|
||||
host->anomaly_rate_rs,
|
||||
1 /* points wanted */,
|
||||
After,
|
||||
Before,
|
||||
Cfg.anomaly_detection_grouping_method,
|
||||
0 /* resampling time */,
|
||||
Options, "anomaly_rate",
|
||||
NULL /* group options */,
|
||||
0, /* timeout */
|
||||
0, /* tier */
|
||||
QUERY_SOURCE_ML,
|
||||
STORAGE_PRIORITY_SYNCHRONOUS
|
||||
);
|
||||
|
||||
if (R) {
|
||||
if (R->d == 1 && R->n == 1 && R->rows == 1) {
|
||||
static thread_local bool prev_above_threshold = false;
|
||||
bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold;
|
||||
bool new_anomaly_event = above_threshold && !prev_above_threshold;
|
||||
prev_above_threshold = above_threshold;
|
||||
if (R) {
|
||||
if (R->d == 1 && R->n == 1 && R->rows == 1) {
|
||||
static thread_local bool prev_above_threshold = false;
|
||||
bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold;
|
||||
bool new_anomaly_event = above_threshold && !prev_above_threshold;
|
||||
prev_above_threshold = above_threshold;
|
||||
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_above_threshold_rd, above_threshold);
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_new_anomaly_event_rd, new_anomaly_event);
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_above_threshold_rd, above_threshold);
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_new_anomaly_event_rd, new_anomaly_event);
|
||||
|
||||
rrdset_done(host->detector_events_rs);
|
||||
rrdset_done(host->detector_events_rs);
|
||||
}
|
||||
|
||||
rrdr_free(OWA, R);
|
||||
}
|
||||
|
||||
rrdr_free(OWA, R);
|
||||
onewayalloc_destroy(OWA);
|
||||
} else {
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_above_threshold_rd, 0);
|
||||
rrddim_set_by_pointer(host->detector_events_rs,
|
||||
host->detector_events_new_anomaly_event_rd, 0);
|
||||
rrdset_done(host->detector_events_rs);
|
||||
}
|
||||
|
||||
onewayalloc_destroy(OWA);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -33,6 +33,14 @@ void ml_host_delete(RRDHOST *rh) {
|
|||
UNUSED(rh);
|
||||
}
|
||||
|
||||
void ml_host_start(RRDHOST *rh) {
|
||||
UNUSED(rh);
|
||||
}
|
||||
|
||||
void ml_host_stop(RRDHOST *rh) {
|
||||
UNUSED(rh);
|
||||
}
|
||||
|
||||
void ml_host_start_training_thread(RRDHOST *rh) {
|
||||
UNUSED(rh);
|
||||
}
|
||||
|
|
|
@ -195,7 +195,7 @@ typedef struct {
|
|||
std::vector<calculated_number_t> cns;
|
||||
|
||||
std::vector<ml_kmeans_t> km_contexts;
|
||||
netdata_mutex_t mutex;
|
||||
SPINLOCK slock;
|
||||
ml_kmeans_t kmeans;
|
||||
std::vector<DSample> feature;
|
||||
|
||||
|
@ -206,8 +206,6 @@ typedef struct {
|
|||
typedef struct {
|
||||
RRDSET *rs;
|
||||
ml_machine_learning_stats_t mls;
|
||||
|
||||
netdata_mutex_t mutex;
|
||||
} ml_chart_t;
|
||||
|
||||
void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous);
|
||||
|
@ -215,6 +213,8 @@ void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_a
|
|||
typedef struct {
|
||||
RRDHOST *rh;
|
||||
|
||||
std::atomic<bool> ml_running;
|
||||
|
||||
ml_machine_learning_stats_t mls;
|
||||
|
||||
calculated_number_t host_anomaly_rate;
|
||||
|
@ -227,6 +227,9 @@ typedef struct {
|
|||
* bookkeeping for anomaly detection charts
|
||||
*/
|
||||
|
||||
RRDSET *ml_running_rs;
|
||||
RRDDIM *ml_running_rd;
|
||||
|
||||
RRDSET *machine_learning_status_rs;
|
||||
RRDDIM *machine_learning_status_enabled_rd;
|
||||
RRDDIM *machine_learning_status_disabled_sp_rd;
|
||||
|
|
119
ml/ml.cc
119
ml/ml.cc
|
@ -568,9 +568,9 @@ int ml_dimension_load_models(RRDDIM *rd) {
|
|||
if (!dim)
|
||||
return 0;
|
||||
|
||||
netdata_mutex_lock(&dim->mutex);
|
||||
netdata_spinlock_lock(&dim->slock);
|
||||
bool is_empty = dim->km_contexts.empty();
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
|
||||
if (!is_empty)
|
||||
return 0;
|
||||
|
@ -602,7 +602,7 @@ int ml_dimension_load_models(RRDDIM *rd) {
|
|||
if (unlikely(rc != SQLITE_OK))
|
||||
goto bind_fail;
|
||||
|
||||
netdata_mutex_lock(&dim->mutex);
|
||||
netdata_spinlock_lock(&dim->slock);
|
||||
|
||||
dim->km_contexts.reserve(Cfg.num_models_to_use);
|
||||
while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) {
|
||||
|
@ -639,7 +639,7 @@ int ml_dimension_load_models(RRDDIM *rd) {
|
|||
dim->ts = TRAINING_STATUS_TRAINED;
|
||||
}
|
||||
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
|
||||
if (unlikely(rc != SQLITE_DONE))
|
||||
error_report("Failed to load models, rc = %d", rc);
|
||||
|
@ -666,7 +666,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
|
|||
ml_training_response_t training_response = P.second;
|
||||
|
||||
if (training_response.result != TRAINING_RESULT_OK) {
|
||||
netdata_mutex_lock(&dim->mutex);
|
||||
netdata_spinlock_lock(&dim->slock);
|
||||
|
||||
dim->mt = METRIC_TYPE_CONSTANT;
|
||||
|
||||
|
@ -687,7 +687,8 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
|
|||
|
||||
dim->last_training_time = training_response.last_entry_on_response;
|
||||
enum ml_training_result result = training_response.result;
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -713,7 +714,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
|
|||
// update models
|
||||
worker_is_busy(WORKER_TRAIN_UPDATE_MODELS);
|
||||
{
|
||||
netdata_mutex_lock(&dim->mutex);
|
||||
netdata_spinlock_lock(&dim->slock);
|
||||
|
||||
if (dim->km_contexts.size() < Cfg.num_models_to_use) {
|
||||
dim->km_contexts.push_back(std::move(dim->kmeans));
|
||||
|
@ -752,7 +753,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
|
|||
model_info.kmeans = dim->km_contexts.back();
|
||||
training_thread->pending_model_info.push_back(model_info);
|
||||
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
}
|
||||
|
||||
return training_response.result;
|
||||
|
@ -851,7 +852,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
|
|||
/*
|
||||
* Lock to predict and possibly schedule the dimension for training
|
||||
*/
|
||||
if (netdata_mutex_trylock(&dim->mutex) != 0)
|
||||
if (netdata_spinlock_trylock(&dim->slock) == 0)
|
||||
return false;
|
||||
|
||||
// Mark the metric time as variable if we received different values
|
||||
|
@ -866,7 +867,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
|
|||
case TRAINING_STATUS_UNTRAINED:
|
||||
case TRAINING_STATUS_PENDING_WITHOUT_MODEL: {
|
||||
case TRAINING_STATUS_SILENCED:
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
|
@ -891,7 +892,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
|
|||
|
||||
if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) {
|
||||
global_statistics_ml_models_consulted(models_consulted);
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -905,7 +906,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
|
|||
dim->ts = TRAINING_STATUS_SILENCED;
|
||||
}
|
||||
|
||||
netdata_mutex_unlock(&dim->mutex);
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
|
||||
global_statistics_ml_models_consulted(models_consulted);
|
||||
return sum;
|
||||
|
@ -992,7 +993,7 @@ ml_host_detect_once(ml_host_t *host)
|
|||
host->mls = {};
|
||||
ml_machine_learning_stats_t mls_copy = {};
|
||||
|
||||
{
|
||||
if (host->ml_running) {
|
||||
netdata_mutex_lock(&host->mutex);
|
||||
|
||||
/*
|
||||
|
@ -1036,6 +1037,8 @@ ml_host_detect_once(ml_host_t *host)
|
|||
mls_copy = host->mls;
|
||||
|
||||
netdata_mutex_unlock(&host->mutex);
|
||||
} else {
|
||||
host->host_anomaly_rate = 0.0;
|
||||
}
|
||||
|
||||
worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART);
|
||||
|
@ -1213,15 +1216,14 @@ void ml_host_new(RRDHOST *rh)
|
|||
|
||||
host->rh = rh;
|
||||
host->mls = ml_machine_learning_stats_t();
|
||||
//host->ts = ml_training_stats_t();
|
||||
host->host_anomaly_rate = 0.0;
|
||||
|
||||
static std::atomic<size_t> times_called(0);
|
||||
host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue;
|
||||
|
||||
host->host_anomaly_rate = 0.0;
|
||||
|
||||
netdata_mutex_init(&host->mutex);
|
||||
|
||||
host->ml_running = true;
|
||||
rh->ml_host = (rrd_ml_host_t *) host;
|
||||
}
|
||||
|
||||
|
@ -1237,6 +1239,70 @@ void ml_host_delete(RRDHOST *rh)
|
|||
rh->ml_host = NULL;
|
||||
}
|
||||
|
||||
void ml_host_start(RRDHOST *rh) {
|
||||
ml_host_t *host = (ml_host_t *) rh->ml_host;
|
||||
if (!host)
|
||||
return;
|
||||
|
||||
host->ml_running = true;
|
||||
}
|
||||
|
||||
void ml_host_stop(RRDHOST *rh) {
|
||||
ml_host_t *host = (ml_host_t *) rh->ml_host;
|
||||
if (!host || !host->ml_running)
|
||||
return;
|
||||
|
||||
netdata_mutex_lock(&host->mutex);
|
||||
|
||||
// reset host stats
|
||||
host->mls = ml_machine_learning_stats_t();
|
||||
|
||||
// reset charts/dims
|
||||
void *rsp = NULL;
|
||||
rrdset_foreach_read(rsp, host->rh) {
|
||||
RRDSET *rs = static_cast<RRDSET *>(rsp);
|
||||
|
||||
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
|
||||
if (!chart)
|
||||
continue;
|
||||
|
||||
// reset chart
|
||||
chart->mls = ml_machine_learning_stats_t();
|
||||
|
||||
void *rdp = NULL;
|
||||
rrddim_foreach_read(rdp, rs) {
|
||||
RRDDIM *rd = static_cast<RRDDIM *>(rdp);
|
||||
|
||||
ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
|
||||
if (!dim)
|
||||
continue;
|
||||
|
||||
netdata_spinlock_lock(&dim->slock);
|
||||
|
||||
// reset dim
|
||||
// TODO: should we drop in-mem models, or mark them as stale? Is it
|
||||
// okay to resume training straight away?
|
||||
|
||||
dim->mt = METRIC_TYPE_CONSTANT;
|
||||
dim->ts = TRAINING_STATUS_UNTRAINED;
|
||||
dim->last_training_time = 0;
|
||||
dim->suppression_anomaly_counter = 0;
|
||||
dim->suppression_window_counter = 0;
|
||||
dim->cns.clear();
|
||||
|
||||
ml_kmeans_init(&dim->kmeans);
|
||||
|
||||
netdata_spinlock_unlock(&dim->slock);
|
||||
}
|
||||
rrddim_foreach_done(rdp);
|
||||
}
|
||||
rrdset_foreach_done(rsp);
|
||||
|
||||
netdata_mutex_unlock(&host->mutex);
|
||||
|
||||
host->ml_running = false;
|
||||
}
|
||||
|
||||
void ml_host_get_info(RRDHOST *rh, BUFFER *wb)
|
||||
{
|
||||
ml_host_t *host = (ml_host_t *) rh->ml_host;
|
||||
|
@ -1279,7 +1345,8 @@ void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb)
|
|||
|
||||
netdata_mutex_lock(&host->mutex);
|
||||
|
||||
buffer_json_member_add_uint64(wb, "version", 1);
|
||||
buffer_json_member_add_uint64(wb, "version", 2);
|
||||
buffer_json_member_add_uint64(wb, "ml-running", host->ml_running);
|
||||
buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions);
|
||||
buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions);
|
||||
buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions +
|
||||
|
@ -1309,8 +1376,6 @@ void ml_chart_new(RRDSET *rs)
|
|||
chart->rs = rs;
|
||||
chart->mls = ml_machine_learning_stats_t();
|
||||
|
||||
netdata_mutex_init(&chart->mutex);
|
||||
|
||||
rs->ml_chart = (rrd_ml_chart_t *) chart;
|
||||
}
|
||||
|
||||
|
@ -1322,8 +1387,6 @@ void ml_chart_delete(RRDSET *rs)
|
|||
|
||||
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
|
||||
|
||||
netdata_mutex_destroy(&chart->mutex);
|
||||
|
||||
delete chart;
|
||||
rs->ml_chart = NULL;
|
||||
}
|
||||
|
@ -1334,7 +1397,6 @@ bool ml_chart_update_begin(RRDSET *rs)
|
|||
if (!chart)
|
||||
return false;
|
||||
|
||||
netdata_mutex_lock(&chart->mutex);
|
||||
chart->mls = {};
|
||||
return true;
|
||||
}
|
||||
|
@ -1344,8 +1406,6 @@ void ml_chart_update_end(RRDSET *rs)
|
|||
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
|
||||
if (!chart)
|
||||
return;
|
||||
|
||||
netdata_mutex_unlock(&chart->mutex);
|
||||
}
|
||||
|
||||
void ml_dimension_new(RRDDIM *rd)
|
||||
|
@ -1360,8 +1420,9 @@ void ml_dimension_new(RRDDIM *rd)
|
|||
|
||||
dim->mt = METRIC_TYPE_CONSTANT;
|
||||
dim->ts = TRAINING_STATUS_UNTRAINED;
|
||||
|
||||
dim->last_training_time = 0;
|
||||
dim->suppression_anomaly_counter = 0;
|
||||
dim->suppression_window_counter = 0;
|
||||
|
||||
ml_kmeans_init(&dim->kmeans);
|
||||
|
||||
|
@ -1370,7 +1431,7 @@ void ml_dimension_new(RRDDIM *rd)
|
|||
else
|
||||
dim->mls = MACHINE_LEARNING_STATUS_ENABLED;
|
||||
|
||||
netdata_mutex_init(&dim->mutex);
|
||||
netdata_spinlock_init(&dim->slock);
|
||||
|
||||
dim->km_contexts.reserve(Cfg.num_models_to_use);
|
||||
|
||||
|
@ -1385,8 +1446,6 @@ void ml_dimension_delete(RRDDIM *rd)
|
|||
if (!dim)
|
||||
return;
|
||||
|
||||
netdata_mutex_destroy(&dim->mutex);
|
||||
|
||||
delete dim;
|
||||
rd->ml_dimension = NULL;
|
||||
}
|
||||
|
@ -1397,6 +1456,10 @@ bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool
|
|||
if (!dim)
|
||||
return false;
|
||||
|
||||
ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host;
|
||||
if (!host->ml_running)
|
||||
return false;
|
||||
|
||||
ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
|
||||
|
||||
bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists);
|
||||
|
|
3
ml/ml.h
3
ml/ml.h
|
@ -23,6 +23,9 @@ void ml_stop_threads(void);
|
|||
void ml_host_new(RRDHOST *rh);
|
||||
void ml_host_delete(RRDHOST *rh);
|
||||
|
||||
void ml_host_start(RRDHOST *RH);
|
||||
void ml_host_stop(RRDHOST *RH);
|
||||
|
||||
void ml_host_get_info(RRDHOST *RH, BUFFER *wb);
|
||||
void ml_host_get_detection_info(RRDHOST *RH, BUFFER *wb);
|
||||
void ml_host_get_models(RRDHOST *RH, BUFFER *wb);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue