0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-04-26 13:54:48 +00:00

Add two functions that allow someone to start/stop ML. ()

* Add two functions that allow someone to start/stop ML.

* Shutdown ML after stopping collector services

* Remove unnecessary mutex from ml charts.

There's already a spinlock that protects the
chart when a someone calls rrdset_done().

* Use a lightweight spinlock instead of a mutext for ML dimensions.
This commit is contained in:
vkalintiris 2023-06-19 15:24:36 +03:00 committed by GitHub
parent e12b0d8aba
commit c76538e2f0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 199 additions and 79 deletions

View file

@ -395,16 +395,17 @@
#define ML_CHART_PRIO_DETECTOR_EVENTS 39183
// [netdata.ml] charts
#define NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS 890001
#define NETDATA_ML_CHART_PRIO_METRIC_TYPES 890002
#define NETDATA_ML_CHART_PRIO_TRAINING_STATUS 890003
#define NETDATA_ML_CHART_RUNNING 890001
#define NETDATA_ML_CHART_PRIO_MACHINE_LEARNING_STATUS 890002
#define NETDATA_ML_CHART_PRIO_METRIC_TYPES 890003
#define NETDATA_ML_CHART_PRIO_TRAINING_STATUS 890004
#define NETDATA_ML_CHART_PRIO_PREDICTION_USAGE 890004
#define NETDATA_ML_CHART_PRIO_TRAINING_USAGE 890005
#define NETDATA_ML_CHART_PRIO_PREDICTION_USAGE 890005
#define NETDATA_ML_CHART_PRIO_TRAINING_USAGE 890006
#define NETDATA_ML_CHART_PRIO_QUEUE_STATS 890006
#define NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS 890007
#define NETDATA_ML_CHART_PRIO_TRAINING_RESULTS 890008
#define NETDATA_ML_CHART_PRIO_QUEUE_STATS 890007
#define NETDATA_ML_CHART_PRIO_TRAINING_TIME_STATS 890008
#define NETDATA_ML_CHART_PRIO_TRAINING_RESULTS 890009
#define NETDATA_ML_CHART_FAMILY "machine learning"
#define NETDATA_ML_PLUGIN "ml.plugin"

View file

@ -344,11 +344,6 @@ void netdata_cleanup_and_exit(int ret) {
webrtc_close_all_connections();
delta_shutdown_time("disable ML detection and training threads");
ml_stop_threads();
ml_fini();
delta_shutdown_time("disable maintenance, new queries, new web requests, new streaming connections and aclk");
service_signal_exit(
@ -377,6 +372,11 @@ void netdata_cleanup_and_exit(int ret) {
| SERVICE_STREAMING
, 3 * USEC_PER_SEC);
delta_shutdown_time("disable ML detection and training threads");
ml_stop_threads();
ml_fini();
delta_shutdown_time("stop context thread");
timeout = !service_wait_exit(

View file

@ -1485,7 +1485,6 @@ static inline void queue_metadata_cmd(enum metadata_opcode opcode, const void *p
cmd.param[1] = param1;
cmd.completion = NULL;
metadata_enq_cmd(&metasync_worker, &cmd);
}
// Public

View file

@ -183,6 +183,41 @@ void ml_update_dimensions_chart(ml_host_t *host, const ml_machine_learning_stats
rrdset_done(host->dimensions_rs);
}
// ML running
{
if (!host->ml_running_rs) {
char id_buf[1024];
char name_buf[1024];
snprintfz(id_buf, 1024, "ml_running_on_%s", localhost->machine_guid);
snprintfz(name_buf, 1024, "ml_running_on_%s", rrdhost_hostname(localhost));
host->ml_running_rs = rrdset_create(
host->rh,
"anomaly_detection", // type
id_buf, // id
name_buf, // name
"anomaly_detection", // family
"anomaly_detection.ml_running", // ctx
"ML running", // title
"boolean", // units
NETDATA_ML_PLUGIN, // plugin
NETDATA_ML_MODULE_DETECTION, // module
NETDATA_ML_CHART_RUNNING, // priority
localhost->rrd_update_every, // update_every
RRDSET_TYPE_LINE // chart_type
);
rrdset_flag_set(host->ml_running_rs, RRDSET_FLAG_ANOMALY_DETECTION);
host->ml_running_rd =
rrddim_add(host->ml_running_rs, "ml_running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
}
rrddim_set_by_pointer(host->ml_running_rs,
host->ml_running_rd, host->ml_running);
rrdset_done(host->ml_running_rs);
}
}
void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number AnomalyRate) {
@ -260,47 +295,55 @@ void ml_update_host_and_detection_rate_charts(ml_host_t *host, collected_number
/*
* Compute the values of the dimensions based on the host rate chart
*/
ONEWAYALLOC *OWA = onewayalloc_create(0);
time_t Now = now_realtime_sec();
time_t Before = Now - host->rh->rrd_update_every;
time_t After = Before - Cfg.anomaly_detection_query_duration;
RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
if (host->ml_running) {
ONEWAYALLOC *OWA = onewayalloc_create(0);
time_t Now = now_realtime_sec();
time_t Before = Now - host->rh->rrd_update_every;
time_t After = Before - Cfg.anomaly_detection_query_duration;
RRDR_OPTIONS Options = static_cast<RRDR_OPTIONS>(0x00000000);
RRDR *R = rrd2rrdr_legacy(
OWA,
host->anomaly_rate_rs,
1 /* points wanted */,
After,
Before,
Cfg.anomaly_detection_grouping_method,
0 /* resampling time */,
Options, "anomaly_rate",
NULL /* group options */,
0, /* timeout */
0, /* tier */
QUERY_SOURCE_ML,
STORAGE_PRIORITY_SYNCHRONOUS
);
RRDR *R = rrd2rrdr_legacy(
OWA,
host->anomaly_rate_rs,
1 /* points wanted */,
After,
Before,
Cfg.anomaly_detection_grouping_method,
0 /* resampling time */,
Options, "anomaly_rate",
NULL /* group options */,
0, /* timeout */
0, /* tier */
QUERY_SOURCE_ML,
STORAGE_PRIORITY_SYNCHRONOUS
);
if (R) {
if (R->d == 1 && R->n == 1 && R->rows == 1) {
static thread_local bool prev_above_threshold = false;
bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold;
bool new_anomaly_event = above_threshold && !prev_above_threshold;
prev_above_threshold = above_threshold;
if (R) {
if (R->d == 1 && R->n == 1 && R->rows == 1) {
static thread_local bool prev_above_threshold = false;
bool above_threshold = R->v[0] >= Cfg.host_anomaly_rate_threshold;
bool new_anomaly_event = above_threshold && !prev_above_threshold;
prev_above_threshold = above_threshold;
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_above_threshold_rd, above_threshold);
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_new_anomaly_event_rd, new_anomaly_event);
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_above_threshold_rd, above_threshold);
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_new_anomaly_event_rd, new_anomaly_event);
rrdset_done(host->detector_events_rs);
rrdset_done(host->detector_events_rs);
}
rrdr_free(OWA, R);
}
rrdr_free(OWA, R);
onewayalloc_destroy(OWA);
} else {
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_above_threshold_rd, 0);
rrddim_set_by_pointer(host->detector_events_rs,
host->detector_events_new_anomaly_event_rd, 0);
rrdset_done(host->detector_events_rs);
}
onewayalloc_destroy(OWA);
}
}

View file

@ -33,6 +33,14 @@ void ml_host_delete(RRDHOST *rh) {
UNUSED(rh);
}
void ml_host_start(RRDHOST *rh) {
UNUSED(rh);
}
void ml_host_stop(RRDHOST *rh) {
UNUSED(rh);
}
void ml_host_start_training_thread(RRDHOST *rh) {
UNUSED(rh);
}

View file

@ -195,7 +195,7 @@ typedef struct {
std::vector<calculated_number_t> cns;
std::vector<ml_kmeans_t> km_contexts;
netdata_mutex_t mutex;
SPINLOCK slock;
ml_kmeans_t kmeans;
std::vector<DSample> feature;
@ -206,8 +206,6 @@ typedef struct {
typedef struct {
RRDSET *rs;
ml_machine_learning_stats_t mls;
netdata_mutex_t mutex;
} ml_chart_t;
void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous);
@ -215,6 +213,8 @@ void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_a
typedef struct {
RRDHOST *rh;
std::atomic<bool> ml_running;
ml_machine_learning_stats_t mls;
calculated_number_t host_anomaly_rate;
@ -227,6 +227,9 @@ typedef struct {
* bookkeeping for anomaly detection charts
*/
RRDSET *ml_running_rs;
RRDDIM *ml_running_rd;
RRDSET *machine_learning_status_rs;
RRDDIM *machine_learning_status_enabled_rd;
RRDDIM *machine_learning_status_disabled_sp_rd;

119
ml/ml.cc
View file

@ -568,9 +568,9 @@ int ml_dimension_load_models(RRDDIM *rd) {
if (!dim)
return 0;
netdata_mutex_lock(&dim->mutex);
netdata_spinlock_lock(&dim->slock);
bool is_empty = dim->km_contexts.empty();
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
if (!is_empty)
return 0;
@ -602,7 +602,7 @@ int ml_dimension_load_models(RRDDIM *rd) {
if (unlikely(rc != SQLITE_OK))
goto bind_fail;
netdata_mutex_lock(&dim->mutex);
netdata_spinlock_lock(&dim->slock);
dim->km_contexts.reserve(Cfg.num_models_to_use);
while ((rc = sqlite3_step_monitored(res)) == SQLITE_ROW) {
@ -639,7 +639,7 @@ int ml_dimension_load_models(RRDDIM *rd) {
dim->ts = TRAINING_STATUS_TRAINED;
}
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
if (unlikely(rc != SQLITE_DONE))
error_report("Failed to load models, rc = %d", rc);
@ -666,7 +666,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
ml_training_response_t training_response = P.second;
if (training_response.result != TRAINING_RESULT_OK) {
netdata_mutex_lock(&dim->mutex);
netdata_spinlock_lock(&dim->slock);
dim->mt = METRIC_TYPE_CONSTANT;
@ -687,7 +687,8 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
dim->last_training_time = training_response.last_entry_on_response;
enum ml_training_result result = training_response.result;
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
return result;
}
@ -713,7 +714,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
// update models
worker_is_busy(WORKER_TRAIN_UPDATE_MODELS);
{
netdata_mutex_lock(&dim->mutex);
netdata_spinlock_lock(&dim->slock);
if (dim->km_contexts.size() < Cfg.num_models_to_use) {
dim->km_contexts.push_back(std::move(dim->kmeans));
@ -752,7 +753,7 @@ ml_dimension_train_model(ml_training_thread_t *training_thread, ml_dimension_t *
model_info.kmeans = dim->km_contexts.back();
training_thread->pending_model_info.push_back(model_info);
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
}
return training_response.result;
@ -851,7 +852,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
/*
* Lock to predict and possibly schedule the dimension for training
*/
if (netdata_mutex_trylock(&dim->mutex) != 0)
if (netdata_spinlock_trylock(&dim->slock) == 0)
return false;
// Mark the metric time as variable if we received different values
@ -866,7 +867,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
case TRAINING_STATUS_UNTRAINED:
case TRAINING_STATUS_PENDING_WITHOUT_MODEL: {
case TRAINING_STATUS_SILENCED:
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
return false;
}
default:
@ -891,7 +892,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
if (anomaly_score < (100 * Cfg.dimension_anomaly_score_threshold)) {
global_statistics_ml_models_consulted(models_consulted);
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
return false;
}
@ -905,7 +906,7 @@ ml_dimension_predict(ml_dimension_t *dim, time_t curr_time, calculated_number_t
dim->ts = TRAINING_STATUS_SILENCED;
}
netdata_mutex_unlock(&dim->mutex);
netdata_spinlock_unlock(&dim->slock);
global_statistics_ml_models_consulted(models_consulted);
return sum;
@ -992,7 +993,7 @@ ml_host_detect_once(ml_host_t *host)
host->mls = {};
ml_machine_learning_stats_t mls_copy = {};
{
if (host->ml_running) {
netdata_mutex_lock(&host->mutex);
/*
@ -1036,6 +1037,8 @@ ml_host_detect_once(ml_host_t *host)
mls_copy = host->mls;
netdata_mutex_unlock(&host->mutex);
} else {
host->host_anomaly_rate = 0.0;
}
worker_is_busy(WORKER_JOB_DETECTION_DIM_CHART);
@ -1213,15 +1216,14 @@ void ml_host_new(RRDHOST *rh)
host->rh = rh;
host->mls = ml_machine_learning_stats_t();
//host->ts = ml_training_stats_t();
host->host_anomaly_rate = 0.0;
static std::atomic<size_t> times_called(0);
host->training_queue = Cfg.training_threads[times_called++ % Cfg.num_training_threads].training_queue;
host->host_anomaly_rate = 0.0;
netdata_mutex_init(&host->mutex);
host->ml_running = true;
rh->ml_host = (rrd_ml_host_t *) host;
}
@ -1237,6 +1239,70 @@ void ml_host_delete(RRDHOST *rh)
rh->ml_host = NULL;
}
void ml_host_start(RRDHOST *rh) {
ml_host_t *host = (ml_host_t *) rh->ml_host;
if (!host)
return;
host->ml_running = true;
}
void ml_host_stop(RRDHOST *rh) {
ml_host_t *host = (ml_host_t *) rh->ml_host;
if (!host || !host->ml_running)
return;
netdata_mutex_lock(&host->mutex);
// reset host stats
host->mls = ml_machine_learning_stats_t();
// reset charts/dims
void *rsp = NULL;
rrdset_foreach_read(rsp, host->rh) {
RRDSET *rs = static_cast<RRDSET *>(rsp);
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
if (!chart)
continue;
// reset chart
chart->mls = ml_machine_learning_stats_t();
void *rdp = NULL;
rrddim_foreach_read(rdp, rs) {
RRDDIM *rd = static_cast<RRDDIM *>(rdp);
ml_dimension_t *dim = (ml_dimension_t *) rd->ml_dimension;
if (!dim)
continue;
netdata_spinlock_lock(&dim->slock);
// reset dim
// TODO: should we drop in-mem models, or mark them as stale? Is it
// okay to resume training straight away?
dim->mt = METRIC_TYPE_CONSTANT;
dim->ts = TRAINING_STATUS_UNTRAINED;
dim->last_training_time = 0;
dim->suppression_anomaly_counter = 0;
dim->suppression_window_counter = 0;
dim->cns.clear();
ml_kmeans_init(&dim->kmeans);
netdata_spinlock_unlock(&dim->slock);
}
rrddim_foreach_done(rdp);
}
rrdset_foreach_done(rsp);
netdata_mutex_unlock(&host->mutex);
host->ml_running = false;
}
void ml_host_get_info(RRDHOST *rh, BUFFER *wb)
{
ml_host_t *host = (ml_host_t *) rh->ml_host;
@ -1279,7 +1345,8 @@ void ml_host_get_detection_info(RRDHOST *rh, BUFFER *wb)
netdata_mutex_lock(&host->mutex);
buffer_json_member_add_uint64(wb, "version", 1);
buffer_json_member_add_uint64(wb, "version", 2);
buffer_json_member_add_uint64(wb, "ml-running", host->ml_running);
buffer_json_member_add_uint64(wb, "anomalous-dimensions", host->mls.num_anomalous_dimensions);
buffer_json_member_add_uint64(wb, "normal-dimensions", host->mls.num_normal_dimensions);
buffer_json_member_add_uint64(wb, "total-dimensions", host->mls.num_anomalous_dimensions +
@ -1309,8 +1376,6 @@ void ml_chart_new(RRDSET *rs)
chart->rs = rs;
chart->mls = ml_machine_learning_stats_t();
netdata_mutex_init(&chart->mutex);
rs->ml_chart = (rrd_ml_chart_t *) chart;
}
@ -1322,8 +1387,6 @@ void ml_chart_delete(RRDSET *rs)
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
netdata_mutex_destroy(&chart->mutex);
delete chart;
rs->ml_chart = NULL;
}
@ -1334,7 +1397,6 @@ bool ml_chart_update_begin(RRDSET *rs)
if (!chart)
return false;
netdata_mutex_lock(&chart->mutex);
chart->mls = {};
return true;
}
@ -1344,8 +1406,6 @@ void ml_chart_update_end(RRDSET *rs)
ml_chart_t *chart = (ml_chart_t *) rs->ml_chart;
if (!chart)
return;
netdata_mutex_unlock(&chart->mutex);
}
void ml_dimension_new(RRDDIM *rd)
@ -1360,8 +1420,9 @@ void ml_dimension_new(RRDDIM *rd)
dim->mt = METRIC_TYPE_CONSTANT;
dim->ts = TRAINING_STATUS_UNTRAINED;
dim->last_training_time = 0;
dim->suppression_anomaly_counter = 0;
dim->suppression_window_counter = 0;
ml_kmeans_init(&dim->kmeans);
@ -1370,7 +1431,7 @@ void ml_dimension_new(RRDDIM *rd)
else
dim->mls = MACHINE_LEARNING_STATUS_ENABLED;
netdata_mutex_init(&dim->mutex);
netdata_spinlock_init(&dim->slock);
dim->km_contexts.reserve(Cfg.num_models_to_use);
@ -1385,8 +1446,6 @@ void ml_dimension_delete(RRDDIM *rd)
if (!dim)
return;
netdata_mutex_destroy(&dim->mutex);
delete dim;
rd->ml_dimension = NULL;
}
@ -1397,6 +1456,10 @@ bool ml_dimension_is_anomalous(RRDDIM *rd, time_t curr_time, double value, bool
if (!dim)
return false;
ml_host_t *host = (ml_host_t *) rd->rrdset->rrdhost->ml_host;
if (!host->ml_running)
return false;
ml_chart_t *chart = (ml_chart_t *) rd->rrdset->ml_chart;
bool is_anomalous = ml_dimension_predict(dim, curr_time, value, exists);

View file

@ -23,6 +23,9 @@ void ml_stop_threads(void);
void ml_host_new(RRDHOST *rh);
void ml_host_delete(RRDHOST *rh);
void ml_host_start(RRDHOST *RH);
void ml_host_stop(RRDHOST *RH);
void ml_host_get_info(RRDHOST *RH, BUFFER *wb);
void ml_host_get_detection_info(RRDHOST *RH, BUFFER *wb);
void ml_host_get_models(RRDHOST *RH, BUFFER *wb);