0
0
Fork 0
mirror of https://github.com/netdata/netdata.git synced 2025-05-07 18:41:03 +00:00
netdata_netdata/ml/ml-private.h
vkalintiris c76538e2f0
Add two functions that allow someone to start/stop ML. ()
* Add two functions that allow someone to start/stop ML.

* Shutdown ML after stopping collector services

* Remove unnecessary mutex from ml charts.

There's already a spinlock that protects the
chart when a someone calls rrdset_done().

* Use a lightweight spinlock instead of a mutext for ML dimensions.
2023-06-19 15:24:36 +03:00

349 lines
8.4 KiB
C++

// SPDX-License-Identifier: GPL-3.0-or-later
#ifndef NETDATA_ML_PRIVATE_H
#define NETDATA_ML_PRIVATE_H
#include "dlib/matrix.h"
#include "ml/ml.h"
#include <vector>
#include <queue>
typedef double calculated_number_t;
typedef dlib::matrix<calculated_number_t, 6, 1> DSample;
/*
* Features
*/
typedef struct {
size_t diff_n;
size_t smooth_n;
size_t lag_n;
calculated_number_t *dst;
size_t dst_n;
calculated_number_t *src;
size_t src_n;
std::vector<DSample> &preprocessed_features;
} ml_features_t;
/*
* KMeans
*/
typedef struct {
std::vector<DSample> cluster_centers;
calculated_number_t min_dist;
calculated_number_t max_dist;
uint32_t after;
uint32_t before;
} ml_kmeans_t;
typedef struct machine_learning_stats_t {
size_t num_machine_learning_status_enabled;
size_t num_machine_learning_status_disabled_sp;
size_t num_metric_type_constant;
size_t num_metric_type_variable;
size_t num_training_status_untrained;
size_t num_training_status_pending_without_model;
size_t num_training_status_trained;
size_t num_training_status_pending_with_model;
size_t num_training_status_silenced;
size_t num_anomalous_dimensions;
size_t num_normal_dimensions;
} ml_machine_learning_stats_t;
typedef struct training_stats_t {
size_t queue_size;
size_t num_popped_items;
usec_t allotted_ut;
usec_t consumed_ut;
usec_t remaining_ut;
size_t training_result_ok;
size_t training_result_invalid_query_time_range;
size_t training_result_not_enough_collected_values;
size_t training_result_null_acquired_dimension;
size_t training_result_chart_under_replication;
} ml_training_stats_t;
enum ml_metric_type {
// The dimension has constant values, no need to train
METRIC_TYPE_CONSTANT,
// The dimension's values fluctuate, we need to generate a model
METRIC_TYPE_VARIABLE,
};
enum ml_machine_learning_status {
// Enable training/prediction
MACHINE_LEARNING_STATUS_ENABLED,
// Disable because configuration pattern matches the chart's id
MACHINE_LEARNING_STATUS_DISABLED_DUE_TO_EXCLUDED_CHART,
};
enum ml_training_status {
// We don't have a model for this dimension
TRAINING_STATUS_UNTRAINED,
// Request for training sent, but we don't have any models yet
TRAINING_STATUS_PENDING_WITHOUT_MODEL,
// Request to update existing models sent
TRAINING_STATUS_PENDING_WITH_MODEL,
// Have a valid, up-to-date model
TRAINING_STATUS_TRAINED,
// Have a valid, up-to-date model that is silenced because its too noisy
TRAINING_STATUS_SILENCED,
};
enum ml_training_result {
// We managed to create a KMeans model
TRAINING_RESULT_OK,
// Could not query DB with a correct time range
TRAINING_RESULT_INVALID_QUERY_TIME_RANGE,
// Did not gather enough data from DB to run KMeans
TRAINING_RESULT_NOT_ENOUGH_COLLECTED_VALUES,
// Acquired a null dimension
TRAINING_RESULT_NULL_ACQUIRED_DIMENSION,
// Chart is under replication
TRAINING_RESULT_CHART_UNDER_REPLICATION,
};
typedef struct {
// Chart/dimension we want to train
char machine_guid[GUID_LEN + 1];
STRING *chart_id;
STRING *dimension_id;
// Creation time of request
time_t request_time;
// First/last entry of this dimension in DB
// at the point the request was made
time_t first_entry_on_request;
time_t last_entry_on_request;
} ml_training_request_t;
typedef struct {
// Time when the request for this response was made
time_t request_time;
// First/last entry of the dimension in DB when generating the request
time_t first_entry_on_request;
time_t last_entry_on_request;
// First/last entry of the dimension in DB when generating the response
time_t first_entry_on_response;
time_t last_entry_on_response;
// After/Before timestamps of our DB query
time_t query_after_t;
time_t query_before_t;
// Actual after/before returned by the DB query ops
time_t db_after_t;
time_t db_before_t;
// Number of doubles returned by the DB query
size_t collected_values;
// Number of values we return to the caller
size_t total_values;
// Result of training response
enum ml_training_result result;
} ml_training_response_t;
/*
* Queue
*/
typedef struct {
std::queue<ml_training_request_t> internal;
netdata_mutex_t mutex;
pthread_cond_t cond_var;
std::atomic<bool> exit;
} ml_queue_t;
typedef struct {
RRDDIM *rd;
enum ml_metric_type mt;
enum ml_training_status ts;
enum ml_machine_learning_status mls;
ml_training_response_t tr;
time_t last_training_time;
std::vector<calculated_number_t> cns;
std::vector<ml_kmeans_t> km_contexts;
SPINLOCK slock;
ml_kmeans_t kmeans;
std::vector<DSample> feature;
uint32_t suppression_window_counter;
uint32_t suppression_anomaly_counter;
} ml_dimension_t;
typedef struct {
RRDSET *rs;
ml_machine_learning_stats_t mls;
} ml_chart_t;
void ml_chart_update_dimension(ml_chart_t *chart, ml_dimension_t *dim, bool is_anomalous);
typedef struct {
RRDHOST *rh;
std::atomic<bool> ml_running;
ml_machine_learning_stats_t mls;
calculated_number_t host_anomaly_rate;
netdata_mutex_t mutex;
ml_queue_t *training_queue;
/*
* bookkeeping for anomaly detection charts
*/
RRDSET *ml_running_rs;
RRDDIM *ml_running_rd;
RRDSET *machine_learning_status_rs;
RRDDIM *machine_learning_status_enabled_rd;
RRDDIM *machine_learning_status_disabled_sp_rd;
RRDSET *metric_type_rs;
RRDDIM *metric_type_constant_rd;
RRDDIM *metric_type_variable_rd;
RRDSET *training_status_rs;
RRDDIM *training_status_untrained_rd;
RRDDIM *training_status_pending_without_model_rd;
RRDDIM *training_status_trained_rd;
RRDDIM *training_status_pending_with_model_rd;
RRDDIM *training_status_silenced_rd;
RRDSET *dimensions_rs;
RRDDIM *dimensions_anomalous_rd;
RRDDIM *dimensions_normal_rd;
RRDSET *anomaly_rate_rs;
RRDDIM *anomaly_rate_rd;
RRDSET *detector_events_rs;
RRDDIM *detector_events_above_threshold_rd;
RRDDIM *detector_events_new_anomaly_event_rd;
} ml_host_t;
typedef struct {
uuid_t metric_uuid;
ml_kmeans_t kmeans;
} ml_model_info_t;
typedef struct {
size_t id;
netdata_thread_t nd_thread;
netdata_mutex_t nd_mutex;
ml_queue_t *training_queue;
ml_training_stats_t training_stats;
calculated_number_t *training_cns;
calculated_number_t *scratch_training_cns;
std::vector<DSample> training_samples;
std::vector<ml_model_info_t> pending_model_info;
RRDSET *queue_stats_rs;
RRDDIM *queue_stats_queue_size_rd;
RRDDIM *queue_stats_popped_items_rd;
RRDSET *training_time_stats_rs;
RRDDIM *training_time_stats_allotted_rd;
RRDDIM *training_time_stats_consumed_rd;
RRDDIM *training_time_stats_remaining_rd;
RRDSET *training_results_rs;
RRDDIM *training_results_ok_rd;
RRDDIM *training_results_invalid_query_time_range_rd;
RRDDIM *training_results_not_enough_collected_values_rd;
RRDDIM *training_results_null_acquired_dimension_rd;
RRDDIM *training_results_chart_under_replication_rd;
} ml_training_thread_t;
typedef struct {
bool enable_anomaly_detection;
unsigned max_train_samples;
unsigned min_train_samples;
unsigned train_every;
unsigned num_models_to_use;
unsigned db_engine_anomaly_rate_every;
unsigned diff_n;
unsigned smooth_n;
unsigned lag_n;
double random_sampling_ratio;
unsigned max_kmeans_iters;
double dimension_anomaly_score_threshold;
double host_anomaly_rate_threshold;
RRDR_TIME_GROUPING anomaly_detection_grouping_method;
time_t anomaly_detection_query_duration;
bool stream_anomaly_detection_charts;
std::string hosts_to_skip;
SIMPLE_PATTERN *sp_host_to_skip;
std::string charts_to_skip;
SIMPLE_PATTERN *sp_charts_to_skip;
std::vector<uint32_t> random_nums;
netdata_thread_t detection_thread;
std::atomic<bool> detection_stop;
size_t num_training_threads;
size_t flush_models_batch_size;
std::vector<ml_training_thread_t> training_threads;
std::atomic<bool> training_stop;
size_t suppression_window;
size_t suppression_threshold;
bool enable_statistics_charts;
} ml_config_t;
void ml_config_load(ml_config_t *cfg);
extern ml_config_t Cfg;
#endif /* NETDATA_ML_PRIVATE_H */